Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Given the facilities for whole genome sequencing with next-generation sequencers, structural and functional gene annotation is now only based on automated prediction. However, errors in terms of gene structure are still frequently reported especially for the correct determination of initiation start codons. Here, we propose a strategy to enrich and detect protein N-termini by mass spectrometry in order to refine genome annotation. After selective protein N-termini derivatization using (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPPAc-OSu) as labeling reagent, protein digestion was performed with three proteases in parallel. TMPP-labeled N-terminal-most peptides were further resolved from internal peptides by the COmbined FRActional DIagonal Chromatography (COFRADIC) sorting methodology before analysis with tandem mass spectrometry. We refined the annotation of the genome of a model marine bacterium, Roseobacter denitrificans.
Project description:In this study, we used a barcoding-based synthetic long read (SLR) isoform sequencing approach (LoopSeq) to generate sequencing reads sufficiently long and accurate to identify isoforms using standard short read Illumina sequencers.
Project description:In this study, we used a barcoding-based synthetic long read (SLR) isoform sequencing approach (LoopSeq) to generate sequencing reads sufficiently long and accurate to identify isoforms using standard short read Illumina sequencers.
Project description:In this study, we used a barcoding-based synthetic long read (SLR) isoform sequencing approach (LoopSeq) to generate sequencing reads sufficiently long and accurate to identify isoforms using standard short read Illumina sequencers.
Project description:Sequencing of mononucleosomal DNA during asynchronous mitosis in Schizosaccharomyces pombe, Schizosaccharomyces octosporus, Schizosaccharomyces japonicus and Saccharomyces cerevisiae Samples from mononucleosomal DNA from asynchronous mitosis of four species of budding (Saccharomyces cerevisiae W303-1a) and fission yeasts (S. pombe wild type 972h-, S. octosporus CBS1804, S. japonicus var. japonicus ade12- FY53) were sequenced (Illumina Genome Analyzer IIx and HiSeq 2500) using the single read and paired end protocol.
Project description:To compare the performance of Illumina and BGI sequencing technologies for high-throughput single cell sequencing, four Chromium single cell libraries of the following human cell types: Induced Pluripotent Stem Cells (hIPSC), cultured Trabecular MeshWork Cells (TMWC) and Peripheral Blood Mononuclear Cells (PBMCs), were sequenced on Illumina sequencers (NextSeq 500, NovaSeq 6000) and a BGI sequencer (MGISEQ-2000). The technologies were benchmarked based on sequencing quality, characterisation of cell populations within samples and for specific single cell analyses such as variant calling and detection of guide RNAs from pooled CRISPR screens.
Project description:A new haloalkaliphilic species of Wenzhouxiangella, strain AB-CW3 was isolated from a system of alkaline soda lakes in the Kulunda Steppe. Its complete, circular genome was assembled from combined nanopore and illumina sequencing and its proteome was determined for three different experimental conditions: growth on Staphylococcus cells, casein, or peptone. AB-CW3 is an aerobic bacterium feeding mainly on proteins and peptides.