Project description:Psychrobacter alimentarius PAMC 27889, a Gram-negative, psychrophilic bacterium, was isolated from an Antarctic rock sample. Here, we report the complete genome of P. alimentarius PAMC 27889, which has the nonmevalonate methylerythritol phosphate pathway of terpenoid biosynthesis and a complete gene cluster for benzoate degradation.
Project description:We used the bioluminescent squid symbiont, Vibrio fischeri, to identify essential regulatory factors that control expression and function of a strain-specific T6SS encoded within a genomic island. Random transposon mutagenesis revealed that three genes located on the T6SS2-encoding genomic island are necessary to activate expression of a T6SS reporter. We used a proteomics approach to identify proteins that were differentially abundant in mutant strains compared to the wild type when cells were grown in a high-viscosity media.
Project description:The bioluminescent bacterium Vibrio fischeri initiates a specific, persistent symbiosis in the light organ of the squid Euprymna scolopes. During the early stages of colonization, V. fischeri is exposed to host-derived nitric oxide (NO). While NO can be both an antimicrobial component of innate immunity and a common signaling molecule of eukaryotes, its roles in beneficial host-microbe associations remain undescribed. V. fischeri encodes HnoX, a member of a family of bacterial NO-binding proteins of unknown function. We hypothesized that HnoX acts as a NO sensor that is involved in regulating symbiosis-related genes during initiation of symbiosis. With an aim to discover the genes whose regulations respond to NO signal, and in an HnoX-mediated fashion in particular, we carried out a whole-genome expression study on the wild-type and an insertional mutant of hnoX.
Project description:The bioluminescent bacterium Vibrio fischeri initiates a specific, persistent symbiosis in the light organ of the squid Euprymna scolopes. During the early stages of colonization, V. fischeri is exposed to host-derived nitric oxide (NO). While NO can be both an antimicrobial component of innate immunity and a common signaling molecule of eukaryotes, its roles in beneficial host-microbe associations remain undescribed. V. fischeri encodes HnoX, a member of a family of bacterial NO-binding proteins of unknown function. We hypothesized that HnoX acts as a NO sensor that is involved in regulating symbiosis-related genes during initiation of symbiosis. With an aim to discover the genes whose regulations respond to NO signal, and in an HnoX-mediated fashion in particular, we carried out a whole-genome expression study on the wild-type and an insertional mutant of hnoX. The wild-type parent and an insertional mutant (hnoX-) of the hnoX gene were grown to early log phase in a minimal-salts medium. One half of each culture was treated with 80µM of the NO-generator, DEA-NONOate, and the other half was left untreated as a control. After 30 min, cells from all the cultures were fixed with RNAprotect Bacteria Reagent. Total RNA was isolated, labeled and hybridized to the Custom Vibrio fischeri GeneChip Array (Affymetrix). Three independent experiments were performed on separate days for statistical analysis.
Project description:16s RNA gene sequencing data from seawater, bed sediment and steel corrosion samples from Shoreham Harbour, UK, collected to allow bacterial species comparisons between microbially influenced corrosion, the surrounding seawater, and the sea bed sediment at the seafloor and 50cm depth below seafloor.