Project description:we generated new reference genome assemblies for two species belonging to two different echinoderm classes: the bat sea star Patiria miniata and the purple sea urchin Strongylocentrotus purpuratus
2024-11-30 | GSE281901 | GEO
Project description:Chromosome-level genome assemblies of five Anopheles species
Project description:Parasitoid wasps are one of the most species-rich groups of animals on Earth, due to their ability to successfully develop as parasites of nearly all types of insects. Unlike most known parasitoid wasps that specialize within one or a few host species, Diachasmimorpha longicaudata is a generalist that can survive within multiple genera of tephritid fruit fly hosts, including many globally important pest species. D. longicaudata has therefore been widely released to suppress pest populations as part of biological control efforts in tropical and subtropical agricultural systems. In this study, we investigated the role of a mutualistic poxvirus in shaping the host range of D. longicaudata across three genera of agricultural pest species: two of which are permissive hosts for D. longicaudata parasitism and one that is a nonpermissive host. We found that permissive hosts Ceratitis capitata and Bactrocera dorsalis were highly susceptible to virus infection, displaying rapid virus replication and abundant fly mortality. However, the nonpermissive host Zeugodacus cucurbitae largely overcame virus infection, exhibiting substantially lower mortality and no virus replication. Further investigation of transcriptional dynamics during virus infection demonstrated hindered viral gene expression and limited changes in fly gene expression within the nonpermissive host compared to the permissive species, indicating that the host range of the viral symbiont may dictate the host range of D. longicaudata wasps. These findings also reveal that viral symbiont activity may be a major contributor to the success of D. longicaudata as a generalist parasitoid species and a globally successful biological control agent.
Project description:The Zika outbreak, spread by the Aedes aegypti mosquito, highlights the need to create high-quality assemblies of large genomes in a rapid and cost-effective fashion. Here, we combine Hi-C data with existing draft assemblies to generate chromosome-length scaffolds. We validate this method by assembling a human genome, de novo, from short reads alone (67X coverage, Sample GSM1551550). We then combine our method with draft sequences to create genome assemblies of the mosquito disease vectors Aedes aegypti and Culex quinquefasciatus, each consisting of three scaffolds corresponding to the three chromosomes in each species. These assemblies indicate that virtually all genomic rearrangements among these species occur within, rather than between, chromosome arms. The genome assembly procedure we describe is fast, inexpensive, accurate, and can be applied to many species.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:The naked mole-rat (NMR; Heterocephalus glaber) has recently gained considerable attention in the scientific community for its unique potential to unveil novel insights in the fields of medicine, biochemistry, and evolution. NMRs exhibit unique adaptations that include protracted fertility, cancer resistance, eusociality, and anoxia. This suite of adaptations is not found in other rodent species, suggesting that interrogating conserved and accelerated regions in the NMR genome will find regions of the NMR genome fundamental to their unique adaptations. However, the current NMR genome assembly has limits that make studying structural variations, heterozygosity, and non-coding adaptations challenging. We present a complete diploid naked-mole rat genome assembly by integrating long-read and 10X-linked read genome sequencing of a male NMR and its parents, and Hi-C sequencing in the NMR hypothalamus (N=2). Reads were identified as maternal, paternal or ambiguous (TrioCanu). We then polished genomes with Flye, Racon and Medaka. Assemblies were then scaffolded using the following tools in order: Scaff10X, Salsa2, 3d-DNA, Minimap2-alignment between assemblies, and the Juicebox Assembly Tools. We then subjected the assemblies to another round of polishing, including short-read polishing with Freebayes. We assembled the NMR mitochondrial genome with mitoVGP. Y chromosome contigs were identified by aligning male and female 10X linked reads to the paternal genome and finding male-biased contigs not present in the maternal genome. Contigs were assembled with publicly available male NMR Fibroblast Hi-C-seq data (SRR820318). Both assemblies have their sex chromosome haplotypes merged so that both assemblies have a high-quality X and Y chromosome. Finally, assemblies were evaluated with Quast, BUSCO, and Merqury, which all reported the base-pair quality and contiguity of both assemblies as high-quality. The assembly will next be annotated by Ensembl using public RNA-seq data from multiple tissues (SRP061363). Together, this assembly will provide a high-quality resource to the NMR and comparative genomics communities.
Project description:This study examines genomic copy-number variation between two African cichlid species through array comparative genomic hybridization. Probe level hybridization ratios were compared to copy number variation identified in Illumina and Pacific Biosciences genome assemblies from both species. Array comparative genomic hybridization was performed with 3 samples (1 replicate array setup) of genomic DNA from Maylandia zebra vs. Orechromis niloticus XX clone genomic DNA from University of Stirling clonal lines.
2019-12-14 | GSE141976 | GEO
Project description:Genome assemblies of five Prunus species and GWASs for key agronomic traits in peach
Project description:The basidiomycete Moniliophthora roreri causes frosty pod rot of cacao (Theobroma cacao) in the Western hemisphere. M. roreri is considered asexual and haploid throughout its hemibiotrophic lifecycle. To understand the processes driving genome modification, using long-read sequencing technology we sequenced and assembled five high quality M. roreri genomes out of a collection of ninety-nine isolates collected throughout the pathogen's range. We obtained chromosome-scale assemblies composed of eleven scaffolds. We used short-read technology to sequence the genomes of twenty-two similarly chosen isolates. Alignments among the five reference assemblies revealed inversions and segmental translocations and duplications between and within scaffolds. Isolates at the front of the pathogens’ expanding range tend to share lineage-specific structural variants, as confirmed by short-read sequencing. We identified, for the first time, three new mating type A locus alleles (five in total) and one new potential mating type B locus allele (three in total). Currently only two mating type combinations, A1B1 and A2B2, are known to exist outside of Colombia. A systematic survey of the M. roreri transcriptome across twenty-two isolates identified an expanded candidate effector pool and provided evidence that effector candidate genes unique to the Moniliophthoras have been selected for preferential expression during the biotrophic phase of disease. Notably, M. roreri isolates in Costa Rica carry a chromosome segment duplication that has doubled the associated gene complement and includes secreted proteins and candidate effectors. Clonal propagation of the haploid M. roreri genome has allowed lineages with unique genome structures and compositions to dominate as it expands its range, displaying a significant founder effect.