Project description:This study aimed to analyze changes in gut microbiota composition in mice after transplantation of fecal microbiota (FMT, N = 6) from the feces of NSCLC patients by analyzing fecal content using 16S rRNA sequencing, 10 days after transplantation. Specific-pathogen-free (SPF) mice were used for each experiments (N=4) as controls.
Project description:Chronic inflammation and gut microbiota dysbiosis are risk factors for colorectal cancer. In clinical practice, inflammatory bowel disease (IBD) patients have a greatly increased risk of developing colitis associated colorectal cancer (CAC). However, the basis underlying the initiation of CAC remains to be explored. Systematic filtration through existing genome-wide association study (GWAS) and conditional deletion of Zfp90 in CAC mice model indicated that Zfp90 was a putative oncogene in CAC development. Strikingly, depletion of gut microbiota eliminated the tumorigenic effect of Zfp90 in CAC mice model. Moreover, fecal microbiota transplantation demonstrated Zfp90 promoted CAC depending on gut microbiota. Combining 16s rDNA sequencing in feces specimens from CAC mice model, we speculated that Prevotella copri-defined microbiota might mediate the oncogenic role of Zfp90 in the development of CAC. Mechanistic studies revealed Zfp90 accelerated CAC development through Tlr4-Pi3k-Akt-Nf-κb pathway. Our findings elucidated the crucial role of Zfp90-microbiota-Nf-κb axis in creating a tumor-promoting environment and suggested therapeutic targets for CAC prevention and treatment.
Project description:<p>Cholestasis is a clinical condition resulting from the impairment of bile flow. Currently, patients with cholestasis still face several barriers in seeking diagnosis and treatment. Zhuyu Pill (ZYP) is an ancient classic formula of the Coptis-Evodia herb couples (CEHC), and has been used for cholestasis treatment in the clinic, however, its underlying biological mechanism in cholestasis remain to be clarified. In this study, a cholestasis rat model, induced by α-naphthyl-isothiocyanate (ANIT, 50mg/kg) and treated with ZYP (0.6g/kg or 1.2g/kg), was adopted. Serum biochemical indices and histopathological evaluation was performed, in addition to metabolomics analyses of fecal and 16S rDNA sequencing of the gut microbiota. We evaluated the anticholestatic activity of ZYP and investigated the mechanism underlying its correlation with gut microbiota and fecal metabolite regulation. The relationships between biochemical indices, fecal metabolites, and gut microbiota were analyzed. The results showed that both high and low doses of ZYP can effectively improve the blood biochemical parameters of cholestasis rats, and the intervention effect of high dose ZYP is superior to that that of lower dose. Based on a metabolomics test of fecal samples, significantly altered metabolites in the ANIT and ZYP treatment group were identified. In total, 734 metabolites were differentially expressed, and whose biological functions were mainly associated with amino acid metabolism, steroid hormone biosynthesis, and bile secretion. In addition, sequencing of the 16S rDNA unit in fecal samples revealed that the ZYP could improve the gut microbiota dysbiosis that ANIT had induced. Therefore, we conclude that ANIT altering of blood biochemical and metabolic profiles and gut microbiota can be effectively alleviated using ZYP treatment, this study contributes “TCM wisdom” to clinical diagnosis and treatment of cholestasis.</p>
Project description:Investigating alterations the intestinal microbiome in a diet induced obesity (DIO) rat model after fecal transplant from rats, which underwent Roux-Y-Gastric-Bypass surgery (RYGB). The microbiomes of the RYGB-donor rats, the DIO rats, and DIO rats after receiving the fecal transplant from the RYGB rats. As controls lean rats as well as lean, RYGB and DIO rats after antibiotics treatment were used.
Project description:Fastq files for the 16S rDNA amplicon library of 714 fecal samples of 20 time series (as described in Vandeputte et al. 2021, Nature Communications)
| EGAD00001008275 | EGA
Project description:Fecal 16S rDNA sequencing of mouse model
Project description:Folic acid deficiency is common worldwide and is linked to intestinal flora imbalance. The intestinal microbial utilization of folic acid based on model animals faces the challenges of repeatability and individual variability. In this study, we built an in vitro fecal slurry culture model deficient in folic acid. We examined the effects of supplementation with different forms of folic acid (5-methyltetrahydrofolate and non-reduced folic acid) on the modulation of intestinal flora. 16S rDNA gene sequencing showed alpha diversity increased after folic acid supplementation compared to fermentation samples with folic acid deficiency. In the non-reduced folic acid (FA) group, the relative abundance of the Firmicutes phylum dropped to 56.7%, whereas in the 5-methyltetrahydrofolate (MTHF) supplementation group, it grew to 64.9%. Lactobacillus genera became more prevalent, reaching 22.8% and 30.8%, respectively. Additionally, Bifidobacterium and Pedioccus, two common probiotic bacteria, were in higher abundance. Short-chain fatty acids (SCFAs) analysis showed that supplementation with folic acid (non-reduced folic acid, 5-methyltetrahydrofolate) decreased acetic acid and increased the fermentation yield of isobutyric acid. The in vitro fecal slurry culture model developed in this study can be utilized as a human folic acid deficiency model for studying intestinal microbiota and demonstrated that both 5-methyltetrahydrofolate and non-reduced folic acid have effects on the regulation of intestinal microecology.