Project description:It is widely accepted that in many food webs, the trophic transfer efficiency among primary producers and herbivores is determined by the nutritional value of primary producers. In pelagic freshwater and marine ecosystems, secondary production by herbivorous crustacean zooplankton is often limited by the seston's content of essential ω3 polyunsaturated fatty acids (ω3 PUFAs). However, little is known about the genetic network behind the positive relationship between phytoplankton ω3 PUFA content and zooplankton growth and reproduction. In our experimental study, we analysed gene expression changes of the freshwater cladoceran Daphnia magna under different food regimes differing in their ω3 PUFA composition. To disentangle ω3 PUFA effects from other factors, we fed D. magna with different pure phytoplankton cultures (i.e., algal and cyanobacterial diets) with or without supplementing the essential ω3 PUFA eicosapentaenoic acid (EPA). As hypothesized, we observed enhanced growth on diets supplemented with EPA. We applied an Illumina RNA-seq approach to D. magna from different diet treatments to find and monitor genes that are regulated dependent on EPA availability. Of 26,646 potential protein products (mapped to the D. magna genome), we identified transcriptomic signatures driven by the different food sources. Further analyses revealed specific candidate genes involved in EPA metabolism, irrespective of the basal food source. This allows a first functional annotation of previously uncharacterized genes involved in the EPA-specific response of D. magna and may finally provide a link to molecular processes connected to ω3 PUFA metabolism and conversion and thus trophic transfer efficiency in pelagic food webs.
2018-01-22 | GSE107545 | GEO
Project description:Genome skimming for nuclear markers across decapod crustacean data sets
Project description:The use of anticancer drugs in chemotherapy is increasing, leading to growing environmental concentrations of imatinib mesylate (IMA), cisplatinum (CDDP), and etoposide (ETP) in aquatic systems. Previous studies have shown that these anticancer drugs cause DNA damage in the crustacean Daphnia magna at low, environmentally relevant concentrations. To explore the mechanism of action of these compounds and the downstream effects of DNA damage on D. magna growth and development at a sensitive life stage, we exposed neonates to low level concentrations equivalent to those that elicit DNA damage (IMA: 2000 ng/L, ETP: 300 ng/L, CDDP: 10 ng/L) and performed transcriptomic analysis using an RNA-seq approach. RNA sequencing generated 14 million reads per sample, which were aligned to the D. magna genome and assembled, producing approximately 23,000 transcripts per sample. Over 90% of the transcripts showed homology to proteins in GenBank, revealing a high quality transcriptome assembly, although functional annotation was much lower. RT-qPCR was used to identify robust biomarkers and confirmed the downregulation of angiotensin converting enzyme (ACE) involved in neuropeptide regulation across all three anticancer drugs and the down-regulation of DNA topoisomerase II by ETP. RNA-seq analysis also allowed for an in depth exploration of the differential splicing of transcripts revealing that regulation of different gene isoforms predicts potential impacts on translation and protein expression, providing a more meaningful assessment of transcriptomic data. Enrichment analysis and investigation of affected biological processes suggested that the DNA damage caused by ETP and IMA influences cell cycle regulation and GPCR signaling. This dysregulation is likely responsible for effects to neurological system processes and development, and overall growth and development. Our transcriptomic approach provided insight into the mechanisms that respond to DNA damage caused by anticancer drug exposure and generated novel hypotheses on how these chemicals may impact the growth and survival of this ecologically important zooplankton species.