Project description:We used single cell RNAseq to identify the populations and identity of cells present in the japanese quail forebrain during its embryonic stages.
Project description:We conducted comparative genome hybridization experiments to catalogue the common copy number variation evident between 269 individuals from three geographically distinct human populations (Yoruban, Chinese/Japanese, European) against a single reference individual.
Project description:Genetic variants, including mobile element insertions (MEIs), are known to impact the epigenome. We hypothesized that the use of a genome graph, which encapsulates genetic diversity, could reveal missing epigenomic signal. We tested this in a dataset obtained by sequencing the epigenome of monocyte-derived macrophages from 35 ancestrally diverse individuals before and after Influenza virus infection, which also allowed us to investigate the potential role of MEIs in immunity. After characterizing genetic variants in this cohort using linked-reads, including 5140 Alu, 316 L1, 94 SVAs and 48 ERVs, we incorporated them into a genome graph. Mapping epigenetic data to this graph revealed 2.5%, 3.0% and 2.3% novel peaks for H3K4me1 and H3K27ac ChIP-seq and ATAC-seq respectively. Notably, using a genome graph also modified quantitative trait loci estimates and we observed 375 polymorphic MEIs in active epigenomic state. For example, we found an AluYh3 polymorphism whose chromatin state changed after infection and that was associated with the expression of TRIM25, a gene that restricts influenza RNA synthesis. Our results demonstrate that graph genomes can reveal regulatory regions that would have been overlooked by other approaches.
Project description:Genetic variants, including mobile element insertions (MEIs), are known to impact the epigenome. We hypothesized that the use of a genome graph, which encapsulates genetic diversity, could reveal missing epigenomic signal. We tested this in a dataset obtained by sequencing the epigenome of monocyte-derived macrophages from 35 ancestrally diverse individuals before and after Influenza virus infection, which also allowed us to investigate the potential role of MEIs in immunity. After characterizing genetic variants in this cohort using linked-reads, including 5140 Alu, 316 L1, 94 SVAs and 48 ERVs, we incorporated them into a genome graph. Mapping epigenetic data to this graph revealed 2.5%, 3.0% and 2.3% novel peaks for H3K4me1 and H3K27ac ChIP-seq and ATAC-seq respectively. Notably, using a genome graph also modified quantitative trait loci estimates and we observed 375 polymorphic MEIs in active epigenomic state. For example, we found an AluYh3 polymorphism whose chromatin state changed after infection and that was associated with the expression of TRIM25, a gene that restricts influenza RNA synthesis. Our results demonstrate that graph genomes can reveal regulatory regions that would have been overlooked by other approaches.
Project description:The 987 probes (Japanese flounder conserved miRNAs and candidates, fish conserved miRNAs, and contro) were hybridized with two stages during Japanese flounder metamorphosis by miRNA microarray. We validated 92 miRNAs using miRNA microarray in the 17 dph and 29 dph of Japanese flounder development, and obtained 66 differertially expressed miRNAs by comparison miRNA expression patterns of the two stages. These results indicate that miRNAs might play key roles in regulating gene expression during Japanese flounder metamorphosis.
Project description:Genome-wide association study (GWAS) was performed in 120 patient-parents trio samples from Japanese schizophrenia pedigrees ABSTRACT: Schizophrenia is a devastating neuropsychiatric disorder with genetically complex traits. Genetic variants should explain a considerable portion of the risk for schizophrenia, and genome-wide association study (GWAS) is a potentially powerful tool for identifying the risk variants that underlie the disease. Here, we report the results of a three-stage analysis of three independent cohorts consisting of a total of 2,535 samples from Japanese and Chinese populations for searching schizophrenia susceptibility genes using a GWAS approach. Firstly, we examined 115,770 single nucleotide polymorphisms (SNPs) in 120 patient-parents trio samples from Japanese schizophrenia pedigrees. In stage II, we evaluated 1,632 SNPs (1,159 SNPs of p < 0.01 and 473 SNPs of p < 0.05 that located in previously reported linkage regions). The second sample consisted of 1,012 case-control samples of Japanese origin. The most significant p value was obtained for the SNP in the ELAVL2 [(embryonic lethal, abnormal vision, Drosophila)-like 2] gene located on 9p21.3 (p = 0.00087). In stage III, we scrutinized the ELAVL2 gene by genotyping gene-centric tagSNPs in the third sample set of 293 family samples (1,163 individuals) of Chinese descent and the SNP in the gene showed a nominal association with schizophrenia in Chinese population (p = 0.026). The current data in Asian population would be helpful for deciphering ethnic diversity of schizophrenia etiology.