Project description:Space travel presents unlimited opportunities for exploration and discovery, but requires a more complete understanding of the immunological consequences of long-term exposure to the conditions of spaceflight. To understand these consequences better and to contribute to design of effective countermeasures, we used the Drosophila model to compare innate immune responses to bacteria and fungi in flies that were either raised on earth or in outer space aboard the NASA Space Shuttle Discovery (STS-121). Microarrays were used to characterize changes in gene expression that occur in response to infection by bacteria and fungus in drosophila that were either hatched and raised in outer space (microgravity) or on earth (normal gravity). Whole Oregon R strain drosophila melanogaster fruit flies either raised on earth or in space that were (1) uninfected, (2) infected with bacteria (Escherichia coli), or (3) infected with fungus (Beauveria bassiana) were used for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Drosophila melanogaster is a validated eukaryotic model for immunity-concerned studies in the post-genomic era. In the present study we performed oral experimental infection of D. melanogaster with Pseudomonas aeruginosa (strain ATCC27853). By using a whole genome microarray approach, we intended to identify significant alterations in the expression profile of relevant genes amenable to qualify as new models for the investigation of specific host-parasite interactions.
Project description:DNase-seq over 3 matching developmental time points in Drosophila melanogaster and Drosophila virilis embryos was performed. The aim is to assess conservation of hypersensitive regions between two distantly related species. Samples were sequenced using Illumina HiSeq.
Project description:DNase-seq over 2 matching developmental time points in Drosophila melanogaster and Drosophila virilis embryos was performed. The aim is to assess conservation of hypersensitive regions between two distantly related species. Samples were sequenced using Illumina NextSeq. This Study is an extension to the previously published Study E-MTAB-3797.
Project description:We report the transcriptional profiles from individual Drosophila melanogaster (whole bodies or dissected brains) to Entomophthora muscae at 24 time points following fungal exposure. In whole fruit fly bodies, a significant immune response is observed following exposure to the fungus. In brains, few differences are consistently observed between infected and uninfected animals.
Project description:The dosage compensation complex (DCC) of Drosophila identifies its X chromosomal binding sites with exquisite selectivity. The principles that assure this vital targeting are known from the D. melanogaster model: DCC-intrinsic specificity of DNA binding, cooperativity with the CLAMP protein, and non-coding roX2 RNA transcribed from the X chromosome. We found that in D. virilis, a species separated from melanogaster by 40 million years of evolution, all principles are active, but contribute differently to X-specificity. In melanogaster, the DCC subunit MSL2 evolved intrinsic DNA-binding selectivity for rare PionX sites, which mark the X chromosome. In virilis, PionX sites are abundant and not X-enriched. Accordingly, MSL2 lacks specific recognition. Here, roX2 RNA plays a more instructive role, counteracting a non-productive interaction of CLAMP and modulating DCC binding selectivity. Remarkably, roX2 triggers a low-diffusion chromatin binding mode characteristic of DCC. Evidently, X-specific regulation is achieved by divergent evolution of similar components.
Project description:Space travel presents unlimited opportunities for exploration and discovery, but requires a more complete understanding of the immunological consequences of long-term exposure to the conditions of spaceflight. To understand these consequences better and to contribute to design of effective countermeasures, we used the Drosophila model to compare innate immune responses to bacteria and fungi in flies that were either raised on earth or in outer space aboard the NASA Space Shuttle Discovery (STS-121). Microarrays were used to characterize changes in gene expression that occur in response to infection by bacteria and fungus in drosophila that were either hatched and raised in outer space (microgravity) or on earth (normal gravity).
Project description:ChIP followed by next generation sequencing over 5 developmental time points of Drosophila virilis embryos (w[-], white eye mutation line) against 5 key mesodermal factors (Twist, Tinman, Mef2, Bagpipe and Biniou) were performed. The aim was to compare binding profiles of these 5 mesodermal factors between two Drosophila species, D. melanogaster (Zinzen et al., 2009) and D. virilis (this study). D. virilis specific antibodies were used for this purpose for 4 of the 5 factors (D. melanogaster Anti-body for Mef2 showed high specificity in D. virilis). Two biological replicates for each condition were sequenced using Illumina HiSeq.