Project description:Cronobacter (C.) is an important emerging opportunistic foodborne pathogen representing significant cause of mortality in neonatal patients with bacteremia and meningitis. Knowledge on the pathobiology of Cronobacter mediated meningitis has to a large extend been explored using in vitro models. To explore the innate immune response against the neonatal sepsis/meningitis causing isolate C. turicensis z3032 in vivo, zebrafish larvae (Danio rerio) were used as infection model. Following establishment of infection in zebrafish larvae with z3032, dual RNA-sequencing of host-pathogen was undertaken to profile RNA expression simultaneously in the pathogen and the head region of the zebrafish host.
Project description:Microbiota in the kangaroo gut degrade cellulose, contributing to the kangaroo's energy and survival. In this preliminary study, to discover more about the gut microbes that contribute to the survival of kangaroos, cellulose-degrading bacteria were isolated from kangaroo scats by selection on solidified media containing carboxymethyl cellulose as the main carbon source. One frequently occurring aerobic bacterium was Siccibacter turicensis, a microbe previously isolated in fruit powder and from a patient with angular cheilitis. The whole genome sequence of the kangaroo isolate was obtained using the Illumina MiSeq platform. Its sequence shared 97.98% identity of the S. turicensis Type strain, and the ability of the Type strain to degrade cellulose was confirmed. Analysis of the genomic data focused on the cellulose operon. In addition to genes from the operon, we suggest that a gene following the operon may have an important role in regulating cellulose metabolism by signal transduction. This is the first report of S. turicensis found within microbiota of the animal gut. Because of its frequent presence in the kangaroo gut, we suggest that S. turicensis plays a role in cellulose digestion for kangaroos.