Project description:Cronobacter (C.) is an important emerging opportunistic foodborne pathogen representing significant cause of mortality in neonatal patients with bacteremia and meningitis. Knowledge on the pathobiology of Cronobacter mediated meningitis has to a large extend been explored using in vitro models. To explore the innate immune response against the neonatal sepsis/meningitis causing isolate C. turicensis z3032 in vivo, zebrafish larvae (Danio rerio) were used as infection model. Following establishment of infection in zebrafish larvae with z3032, dual RNA-sequencing of host-pathogen was undertaken to profile RNA expression simultaneously in the pathogen and the head region of the zebrafish host.
Project description:The sequencing and bioinformatics analyses of isolates Cr150, Cr170, and Cr611 from powdered infant formula indicate that the three strains represent new members in the Cronobacter muytjensii, Cronobacter turicensis, and Cronobacter sakazakii groups, respectively.
Project description:Cronobacter sakazakii is a foodborne opportunistic pathogen that causes pneumonia, meningitis and bacteremia. To understand the acidic regulated and two component system PmrA/PmrB about strain pathogenesis, transcriptomics analysis of C. sakazakii grown under acidic pH 5.0 was performed by using RNA-sequencing.