Project description:In Apis mellifera, the female eggs can develop into workers or queen depending on the diet offered during early development. The outputs of the developed honeybee females are two morphs with particular morphological traits and related physiology. The differential feeding regime experienced by the queen and the worker larvae of the honeybee Apis mellifera shapes a complex endocrine response cascade that ultimately sets up differences in brain morphologies. Herein we report on aspects of brain morphogenesis during larval development and the brain gene expression signature of fourth instar larvae (L4) of both castes, a developmental stage characterized by the greatest differences in juvenile hormone (JH) titers between castes Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from brain of fourth instar larvae honeybees of both castes we present a list of differentially expressed genes.
Project description:Epigenetic modifications are known to profoundly affect the development and behavior of social insects. In the well-known caste differentiation process of honeybee (Apis mellifera), female larvae with identical genomes are fed royal jellydifferently and develop into either normal workers or into very large, long-lived, and extremely fecund queens, and the queen-worker asymmetry of honeybee is known to be result largely to differential genomic imprinting during larval development that involves DNA methylation-based regulation. The discovery of reversible N6-methyladenosine (m6A) RNA methylation modification has defined a new era for RNA-metabolism-related genetic regulation, yet much remains unknown about m6A-mediated post-transcriptional regulatory mechanisms. Here, we report the first honeybee RNA m6A methylome. Specifically, we used the m6A-seq technique to examine the RNA m6A methylomes of honeybee larvae, including queen and worker larvae at multiple instar stages. We identified multiple conserved features of m6A methylation machinery and transcriptome-wide m6A distribution trends among insect species, and observed that m6A marks exert functions in regulating caste differentiation, with apparently particularly strong functional impacts on fifth instar worker larvae. Functional annotation of differentially methylated candidate caste-differentiation-related transcripts revealed many known regulators of caste differentiation (e.g. ILP-2, p110, PI3K, and JHAMT etc.) as well as the widely-studied Vitellogenin gene, which has not previously been implicated in caste differentiation. As ever-more regulatory roles for m6A marks are discovered, honeybees may become an excellent model studying the biology of such epi-transcriptomic regulatory systems, from embryonic development through holometabolous caste-specific development and on towards behavior and the emergent social hierarchies underlying eusociality in animals.
Project description:In Apis mellifera, the female eggs can develop into workers or queen depending on the diet offered during early development. The outputs of the developed honeybee females are two morphs with particular morphological traits and related physiology. The differential feeding regime experienced by the queen and the worker larvae of the honeybee Apis mellifera shapes a complex endocrine response cascade that ultimately sets up differences in brain morphologies. Herein we report on aspects of brain morphogenesis during larval development and the brain gene expression signature of fourth instar larvae (L4) of both castes, a developmental stage characterized by the greatest differences in juvenile hormone (JH) titers between castes Using results from the hybridization of whole genome-based oligonucleotide arrays with RNA samples from brain of fourth instar larvae honeybees of both castes we present a list of differentially expressed genes. Analysis used one dye-swap combination to compare workers and queens brain development at fourth instar larvae when juvenile hormone titers is higher in queens.
Project description:Female honeybees are specified as workers or queens based on diet during early development. Workers are essentially sterile with a reduced number of ovarioles and no spermatheca. In the presence of the queen (queen mandibular pheromone) and her brood, worker ovaries are kept in an inactive quiescent state. If the queen is removed, or lost, worker bees are able to sense this change in their environment and their ovaries undergo complete remodelling producing unfertilised haploid eggs that will produce male (drone bees). In this study we analyse gene expression in queen, worker, and laying worker ovaries using RNA-seq and explore differences in the chromatin landscape (focussing on H3K27me3).
Project description:Female honeybees are specified as workers or queens based on diet during early development. Workers are essentially sterile with a reduced number of ovarioles and no spermatheca. In the presence of the queen (queen mandibular pheromone) and her brood, worker ovaries are kept in an inactive quiescent state. If the queen is removed, or lost, worker bees are able to sense this change in their environment and their ovaries undergo complete remodeling producing unfertilized haploid eggs that will produce male (drone bees). In this study we analyze gene expression in queen, worker, and laying worker ovaries using RNA-seq and explore differences in the chromatin landscape (focusing on H3K27me3).
Project description:Honeybees are very important eusocial insects and are involved in the pollination of many plants. Queen bees and worker bees develop from the same fertilized eggs, and are thus genetically identical despite their substantial behavioural and physiological differences. The mechanism governing developmental differences between worker and queen bees has always attracted much interest. While there are several reports on mRNA expression related to caste differentiation, no systematic investigation of small RNAs has thus far been carried out. Results: Using deep sequencing we systematically profiled small RNA expression in 4th-6th day worker larvae and queen larvae (the critical stages at which the fates of workers and queens are determined), and found that 38 miRNAs were differentially expressed between worker and queen larvae. In addition, 639 mature miRNA candidates were identified in our work for the first time, of which, 526 were expressed only in workers (318) or queens (208). Conclusion: We present the first profile of honeybee small RNAs and explore the mechanism of caste differentiation between worker and queen bees. Caste-specific expression patterns and large discrepancies in small RNA profiles between worker and queen bees indicate that small RNAs may be related to the differential development of worker and queen bee larvae. Results presented here will make a valuable contribution to understanding the caste switch between worker and queen bees.