Project description:Phosphopeptides were purified using Titansphere. Before MS analysis, phosphopeptides were desalted using StageTips with C18 Empore disk membranes. Phosphopeptides were analysed by Orbitrap MS.The obtained MS and MS/MS spectra data were searched against Kazusa DNA Research Institute published lotus EST database using the MASCOT program (FDR<1%).
Project description:Lotus japonicus is a model plant for the legume family. To facilitate map-based cloning approaches and genome analysis, we performed an extensive characterization of the chromosome complement of the species. A detailed karyotype of L. japonicus Gifu was built and plasmid and BAC clones, corresponding to genetically mapped markers (see the accompanying article by Sandal et al. 2002, this issue), were used for FISH to correlate genetic and chromosomal maps. Hybridization of DNA clones from 32 different genomic regions enabled the assignment of linkage groups to chromosomes, the comparison between genetic and physical distances throughout the genome, and the partial characterization of different repetitive sequences, including telomeric and centromeric repeats. Additional analysis of L. filicaulis and its F(1) hybrid with L. japonicus demonstrated the occurrence of inversions between these closely related species, suggesting that these chromosome rearrangements are early events in speciation of this group.
Project description:Lotus japonicus is a model legume broadly used to study transcriptome regulation under different stress conditions and microorganism interaction. Understanding how this model plant respond gainst alkaline stress will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important response mechanisms activated during alkaline stress, we explored by microarray analysis the transcriptome regulation occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. japonicus after 21 days of alkaline stress.
Project description:Legume plants can establish symbiotic nitrogen fixation (SNF) with rhizobia mostly in root nodules, where rhizobia-infected cells are accompanied with uninfected cells in a mosaic pattern. Inside the mature nodules of legume, carbon and nitrogen nutrients between host plant cells and their resident bacteria are actively exchanged. To elucidate the metabolite dynamics relevant for SNF in nodules, three cell-types from nodule tissues of a model legume, Lotus japonicus, were isolated using laser microdissesction, and transcriptome analysis was done by an oligoarray with 60-mer length representing 21,495 genes. In our cell-type-specific profiling, many genes were identified as being expressed in nodules with spatial-specific manners. Among them, genes coding for metabolic enzymes were classified according to their function, and detailed data analysis figured out that secondary metabolic pathway was highly activated in nodule cortex. In particular, a number of metabolic genes for phenyl propanoid pathway were found as highly expressed genes accompanied with those encoding putative transporters of secondary metabolites. These data suggest the involvement of novel physiological function of phenylpropanoids in SNF.
Project description:Lotus japonicus is a well-characterized model legume widely used in the study of plant-microbe interactions. However, datasets from various Lotus studies are poorly integrated and lack interoperability. We recognize the need for a comprehensive repository that allows comprehensive and dynamic exploration of Lotus genomic and transcriptomic data. Equally important are user-friendly in-browser tools designed for data visualization and interpretation. Here, we present Lotus Base, which opens to the research community a large, established LORE1 insertion mutant population containing an excess of 120,000 lines, and serves the end-user tightly integrated data from Lotus, such as the reference genome, annotated proteins, and expression profiling data. We report the integration of expression data from the L. japonicus gene expression atlas project, and the development of tools to cluster and export such data, allowing users to construct, visualize, and annotate co-expression gene networks. Lotus Base takes advantage of modern advances in browser technology to deliver powerful data interpretation for biologists. Its modular construction and publicly available application programming interface enable developers to tap into the wealth of integrated Lotus data. Lotus Base is freely accessible at: https://lotus.au.dk.