Project description:Worker division of labor is a defining trait in social insects. Many species are characterized by having behavioral flexibility where workers perform non-typical tasks for their age depending on the colony's needs. Worker division of labor and behavioral flexibility were examined in the little fire ant Wasmannia auropunctata (Roger, 1863), for which age-related division of labor has been found. Young workers perform nursing duties which include tending of brood and queens, and colony defense, while older workers forage. When nurses were experimentally removed from the colony, foragers were observed carrying out nursing and colony defense duties, yet when foragers were removed nurses did not forage precociously. We also administered juvenile hormone analog, methoprene, to workers. When methoprene was applied, foragers increased their nursing and defense activities while nurses became mainly idle. The behavioral flexibility of foragers of the little fire ant may be evidence of an expansion of worker's repertoires as they age; older workers can perform tasks they have already done in their life while young individuals are not capable of performing tasks ahead of time. This may be an important adaptation associated with the success of this ant as an invasive species.
Project description:Despite being one of the most destructive invasive species of ants, only two natural enemies are known currently for Wasmannia auropunctata, commonly known as the electric ant or little fire ant. Because viruses can be effective biological control agents against many insect pests, including ants, a metagenomics/next-generation sequencing approach was used to facilitate discovery of virus sequences from the transcriptomes of W. auropunctata. Five new and complete positive sense, single-stranded RNA virus genomes, and one new negative sense, single-stranded RNA virus genome were identified, sequenced, and characterized from W. auropunctata collected in Argentina by this approach, including a dicistrovirus (Electric ant dicistrovirus), two polycipiviruses (Electric ant polycipivirus 1; Electric ant polycipivirus 2), a solinvivirus (Electric ant solinvivirus), a divergent genome with similarity to an unclassified group in the Picornavirales (Electric ant virus 1), and a rhabdovirus (Electric ant rhabdovirus). An additional virus genome was detected that is likely Solenopsis invicta virus 10 (MH727527). The virus genome sequences were absent from the transcriptomes of W. auropunctata collected in the USA (Hawaii and Florida). Additional limited field surveys corroborated the absence of these viruses in regions where the electric ant is invasive (the USA and Australia). The replicative genome strand of four of the viruses (Electric ant polycipivirus 2, Electric ant solinvivirus, Electric ant virus 1, and Solenopsis invicta virus 10 (in the electric ant) was detected in Argentinean-collected W. auropunctata indicating that the ant is a host for these viruses. These are the first virus discoveries to be made from W. auropunctata.
Project description:Endosymbiotic reproductive manipulators may have drastic effects on the ecological and evolutionary dynamics of their hosts. The prevalence of these endosymbionts reflects both their ability to manipulate their hosts and the history of the host populations. The little fire ant Wasmannia auropunctata displays a polymorphism in both its reproductive system (sexual versus clonal populations) and the invasive status of its populations (associated to a habitat shift). We first screened for the presence of a diverse array of reproductive parasites in sexual and clonal populations of W. auropunctata, as a means to investigate the role of endosymbionts in reproductive phenotypes. Wolbachia was the only symbiont found and we then focused on its worldwide distribution and diversity in natural populations of W. auropunctata. Using a multilocus scheme, we further characterized the Wolbachia strains present in these populations. We found that almost all the native sexual populations and only a few clonal populations are infected by Wolbachia. The presence of similar Wolbachia strains in both sexual and clonal populations indicates that they are probably not the cause of the reproductive system polymorphism. The observed pattern seems rather associated to the invasion process of W. auropunctata. In particular, the observed loss of Wolbachia in clonal populations, that recurrently emerged from sexual populations, likely resulted from natural heat treatment and/or relaxed selection during the shift in habitat associated to the invasion process.
Project description:The little fire ant Wasmannia auropunctata, native to the Neotropics, has become a serious pest worldwide over the past 100 years. It was originally distributed from Mexico to northern Argentina and new evidence suggests a recent southern range expansion during the last 60 years reaching central Argentina. This supercolonial ant species has a polymorphic reproductive system. Some populations, mostly found in undisturbed natural environments, are characterised by a classical sexual haplodiploid reproductive system. In other populations, which mainly occur in human-modified habitats, diploid queens and haploid males are produced clonally while workers are produced sexually. Here we studied the association between the recent southern range expansion of W. auropunctata in relation to human activity and clonality. We carried out an extensive survey within the southern limit of the species' native distribution and characterised the type of habitat where populations were found. Moreover, we genetically determined the type of reproductive system in 35 populations by genotyping at 12 microsatellite loci a total of 191 reproductive individuals (i.e. queens and/or males). Clonality was the most common reproductive system, occurring in 31 out of 35 populations analysed. All the populations found in the recently colonised area in central Argentina were clonal and established in human-modified habitats, suggesting that clonality together with human activity might have facilitated the southwards expansion of W. auropunctata.