Project description:Worker division of labor is a defining trait in social insects. Many species are characterized by having behavioral flexibility where workers perform non-typical tasks for their age depending on the colony's needs. Worker division of labor and behavioral flexibility were examined in the little fire ant Wasmannia auropunctata (Roger, 1863), for which age-related division of labor has been found. Young workers perform nursing duties which include tending of brood and queens, and colony defense, while older workers forage. When nurses were experimentally removed from the colony, foragers were observed carrying out nursing and colony defense duties, yet when foragers were removed nurses did not forage precociously. We also administered juvenile hormone analog, methoprene, to workers. When methoprene was applied, foragers increased their nursing and defense activities while nurses became mainly idle. The behavioral flexibility of foragers of the little fire ant may be evidence of an expansion of worker's repertoires as they age; older workers can perform tasks they have already done in their life while young individuals are not capable of performing tasks ahead of time. This may be an important adaptation associated with the success of this ant as an invasive species.
Project description:Despite being one of the most destructive invasive species of ants, only two natural enemies are known currently for Wasmannia auropunctata, commonly known as the electric ant or little fire ant. Because viruses can be effective biological control agents against many insect pests, including ants, a metagenomics/next-generation sequencing approach was used to facilitate discovery of virus sequences from the transcriptomes of W. auropunctata. Five new and complete positive sense, single-stranded RNA virus genomes, and one new negative sense, single-stranded RNA virus genome were identified, sequenced, and characterized from W. auropunctata collected in Argentina by this approach, including a dicistrovirus (Electric ant dicistrovirus), two polycipiviruses (Electric ant polycipivirus 1; Electric ant polycipivirus 2), a solinvivirus (Electric ant solinvivirus), a divergent genome with similarity to an unclassified group in the Picornavirales (Electric ant virus 1), and a rhabdovirus (Electric ant rhabdovirus). An additional virus genome was detected that is likely Solenopsis invicta virus 10 (MH727527). The virus genome sequences were absent from the transcriptomes of W. auropunctata collected in the USA (Hawaii and Florida). Additional limited field surveys corroborated the absence of these viruses in regions where the electric ant is invasive (the USA and Australia). The replicative genome strand of four of the viruses (Electric ant polycipivirus 2, Electric ant solinvivirus, Electric ant virus 1, and Solenopsis invicta virus 10 (in the electric ant) was detected in Argentinean-collected W. auropunctata indicating that the ant is a host for these viruses. These are the first virus discoveries to be made from W. auropunctata.