Project description:We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode.
Project description:Bioinformatic prediction, deep sequencing of microRNA and expression analysis during phenotypic plasticity in the pea aphid acyrthosiphon pisum We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode.
Project description:Bioinformatic prediction, deep sequencing of microRNA and expression analysis during phenotypic plasticity in the pea aphid acyrthosiphon pisum We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode. deep sequencing of small RNAs from parthenogenetic Acyrthosiphon pisum
Project description:We developed high throughput Solexa sequencing and bioinformatic analyses of the genome of the pea aphid Acyrthosiphon pisum in order to identify the first miRNAs from a hemipteran insect. By combining these methods we identified 155 miRNAs including 56 conserved and 99 new miRNAs. Moreover, we investigated the regulation of these miRNAs in different alternative morphs of the pea aphid by analysing the expression of miRNAs across the switch of reproduction mode. An array including the 155 aphid microRNAs was designed in order to follow the expression of aphid microRNAs during the modification of reproduction mode of the pea aphid
Project description:Mitochondrial composition varies by organ and their constituent cell types. This mitochondrial diversity likely determines variations in mitochondrial function. However, the heterogeneity of mitochondria in the brain remains underexplored despite the large diversity of cell types in neuronal tissue. Here, we used molecular systems biology tools to address whether mitochondrial composition varies by brain region and neuronal cell type. We reasoned that proteomics and transcriptomics of microdissected brain regions combined with analysis of single cell mRNA sequencing could reveal the extent of mitochondrial compositional diversity. We selected nuclear encoded gene products forming complexes of fixed stoichiometry, such as the respiratory chain complexes and the mitochondrial ribosome, as well as molecules likely to perform their function as monomers, such as the family of SLC25 transporters. We found that only the proteome encompassing these nuclear-encoded mitochondrial genes and obtained from microdissected brain tissue segregated the hippocampus, striatum, and cortex from each other. Nuclear-encoded mitochondrial transcripts could only segregate cell types and brain regions when the analysis was performed at the single cell level. In fact, single cell mitochondrial transcriptomes were able to distinguish glutamatergic and distinct types of GABAergic neurons from one another. Within these cell categories, unique SLC25A transporters were able to identify distinct cell subpopulations. Our results demonstrate heterogeneous mitochondrial composition across brain regions and cell types. We postulate that mitochondrial heterogeneity influences regional and cell type specific mechanisms in health and disease.
Project description:The aim of this experiment was to compare the transciptome of the peach-potato aphid (Myzus persicae) clone 4106a (a laboratory insecticide-susceptible standard collected from potato in Scotland in 2000) with clone FRC (an insecticide resistant aphid clone collected from peach in France in 2009) to identify which genes are over or underexpressed in the resistant phenotype. The custom microarray used in this study was designed using the Agilent eArray platform (Agilent Technologies) by the Georg Jander Lab and is based on a previously described array containing probes for >10, 000 M. persicae unigenes produced by Sanger sequencing (Ramsey, Wilson et al. 2007) augmented with an additional 30, 517 probe set designed on EST unigene sequences identified in a 454 sequencing project (Ramsey, Rider et al. 2010). The final slide layout consists of four arrays of 45, 220 60-mer probes and these are produced by Agilent by in situ oligonucleotide synthesis. References: Ramsey, J. S., D. S. Rider, et al. (2010). "Comparative analysis of detoxification enzymes in Acyrthosiphon pisum and Myzus persicae." Insect Molecular Biology 19: 155-164. Ramsey, J. S., A. C. C. Wilson, et al. (2007). "Genomic resources for Myzus persicae: EST sequencing, SNP identification, and microarray design." BMC Genomics 8.
Project description:A fliZ mutant in the entomopathogenic bacterium X. nematophila is attenuated in virulence in the insect. The goal of this study is to compare transcriptomes of the fliZ mutant and wild type strain to identify the FliZ regulon.