Project description:Genome-wide expression analysis of reactive astrocytes in the injured spinal cord at 7 days after spinal cord injury, host astrocytes in the naive spianl cord, and transplanted astrocytes in the naive spianl cord at 7 days after being transplanted
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:The aim of the experiment is to characterize, and understand the genetics behind, the inflammatory and neurodegenerative processes occuring after ventral root avulsion (VRA), a model of spinal cord injury, by studying the genome wide expression in the injured spinal cord. We have bred an F2 intercross from two previously well described inbred rat strains (DA and PVG), with known different susceptibility to neuroinflammation and neurodegeneration and performed VRA on these animals and then taken the injured part of the spinal for transcriptional profiling.
Project description:To characterize the genetic basis of hybrid male sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL - but not cis eQTL - were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility.
Project description:We demonstrate for the first time that the extracellular matrix glycoprotein Tenascin-C regulates the expression of key patterning genes during late embryonic spinal cord development, leading to a timely maturation of gliogenic neural precursor cells. We first show that Tenascin-C is expressed by gliogenic neural precursor cells during late embryonic development. The loss of Tenascin-C leads to a sustained generation and delayed migration of Fibroblast growth factor receptor 3 expressing immature astrocytes in vivo. Furthermore, we could demonstrate an upregulation of Nk2 transcription factor related locus 2 (Nkx2.2) and its downstream target Sulfatase 1 in vivo. A dorsal expansion of Nkx2.2-positive cells within the ventral spinal cord indicates a potential progenitor cell domain shift. Moreover, Sulfatase 1 is known to regulate growth factor signalling by cleaving sulphate residues from heparan sulphate proteoglycans. Consistent with this possibility we observed changes in both Fibroblast growth factor 2 and Epidermal growth factor responsiveness of spinal cord neural precursor cells. Taken together our data clearly show that Tenascin-C promotes the astroglial lineage progression during spinal cord development.