Project description:The aim of the experiment is to characterize, and understand the genetics behind, the inflammatory and neurodegenerative processes occuring after ventral root avulsion (VRA), a model of spinal cord injury, by studying the genome wide expression in the injured spinal cord. We have bred an F2 intercross from two previously well described inbred rat strains (DA and PVG), with known different susceptibility to neuroinflammation and neurodegeneration and performed VRA on these animals and then taken the injured part of the spinal for transcriptional profiling.
Project description:LncRNAs played a crucial role in the cell growth, development and some diseases relating to central nerve system.This study suggest that with regulating the LncRNAs expression level we might design novel therapy for spinalcord injury. In this dataset, we profiled the expression pattern of LncRNAs by microarray method after spinal cord injury (SCI). Through Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis seek LncRNAs potential function in the repair of spinal cord injury. Fifteen samples were analyzed. In these sample, we divided into five groups (sham operation, 1 day post-injured, 3 days post-injured, 1 week post-injued and 3 weeks post-injured) and each group contained three mice.After RNA extraction,RNA form mice in the same group were mixed by equal mass for the preparation of microarray.Compared with spinal cord without injury, the differential expression level of LncRNAs had a few changes at 1day post-injury, reached the peak at 1 week after SCI, and subsequently declined until 3 weeks post-injury. Genes with an FDR≤0.05 and a fold-change ≥2 were selected. Subsequently we analysis the significant differential expression genes.
Project description:Genome-wide expression analysis of reactive astrocytes in the injured spinal cord at 7 days after spinal cord injury, host astrocytes in the naive spianl cord, and transplanted astrocytes in the naive spianl cord at 7 days after being transplanted
Project description:The aneurysm clip impact-compression model of spinal cord injury (SCI) in animals mimics the primary mechanism of SCI in human, i.e. acute impact and persisting compression; and its histo-pathological and behavioural outcomes are extensively similar to the human SCI. In order to understand the distinct molecular events underlying this injury model, an analysis of global gene expression of the acute, subacute and chronic stages of a moderate to severe injury to the rat spinal cord was conducted using a microarray gene chip approach. Rat thoracic spinal cord (T7) was injured using aneurysm clip impact-compression injury model and the epicenter area of injured spinal cord was isolated for RNA extraction and processing and hybridization on Affymetrix GeneChip arrays.
Project description:The goal of this study is to elucidate the influence of hemisection injury at thoracic spinal cord (T9) and epidural electrical spinal stimulation (L2-S1) on transcriptome of injured thoracic spinal cord. mRNA profiles of spinal cord at 5 days-post injury with or without epidural electrical spinal stimulation (L2-S1) and before injury were generated. Our study represents the detailed analysis of transcriptomes of injured spinal cord with biologic replicates, generated by RNA-seq technology.
Project description:Purpose: The goal of this study was to determine the gene expression changes that occur over 7 days in parralyzed muscle in response to isometric contraction elicited by electrical stimulation initiated 4 months after spinal cord injury and to compare such changes to those observed in a normal muscle subjected to overload. Methods: Electrical stimulation of the soleus and plantaris muscle was stimulated in female rats with complete transection of the spinal cord at the interspace between the 9th and 10th thoracic vertebrae. Stimulation was begun 16 weeks after spinal cord transection and produced near-isometric contraction of soleus, plantaris and tibialis anterior. Muscle was analyzed at 1, 2 and 7 days after starting exercise with electrical stimulation. To provide a baseline reference for gene expression at 16 weeks after spinal cord injury, muscle was also analysed from an additional group of spinal cord transected animals. One additional group of animals with a sham-spinal cord injury was included to provide information about gene expression in neurologically intact animals of similar age. In parallel studies, rats underwent bilateral gastrocnemius ablation to overload soleus and plantaris, or a sham ablation as a control. Muscle was analyzed at 1, 3 and 7 days after gastrocnemius ablation or sham-ablation. Gene expression was determined using Affymetrix Rat Exon microarrays. For each group of animals, microarray analysis was performed for soleus muscle for each of 3 separate animals, using one array per animal. Control sammples for the spinal cord injured groups included a group of animals with a Sham-spinal cord injury, and a group of spinal cord injured animals that did not get electrical stimulation. The comparator for determining fold-change expression values was the spinal cord injured group that did not receive electrical stimulation. For each day after gastrocnemius ablation, a control was included that received all procedures needed for this ablation except cutting the distal insertion of the gastrocnemius into the Achilles tendon to control for effects of the surgery on gene expression.
Project description:Mice lacking the developmental axon guidance molecule EphA4 have previously been shown to exhibit extensive axonal regeneration and functional recovery following spinal cord injury. To assess mechanisms by which EphA4 may modify the response to neural injury, a microarray was performed on spinal cord tissue from mice with spinal cord injury and sham injured controls. RNA was purified from spinal cords of adult EphA4 knockout and wild-type mice four days following lumbar spinal cord hemisection or laminectomy only and was hybridised to Affymetrix All-Exon Array 1.0 GeneChips. While subsequent analyses indicated that several pathways were altered in EphA4 knockout mice, of particular interest was the attenuated or otherwise altered expression of a number of inflammatory genes, including Arginase 1, expression of which was lower in injured EphA4 knockout compared to wild-type mice. Immunohistological analyses of different cellular components of the immune response were then performed in injured EphA4 knockout and wild-type spinal cords. While numbers of infiltrating CD3+ T cells were low in the hemisection model, a robust CD11b+ macrophage / microglial response was observed post-injury. There was no difference in the overall number or spread of macrophages / activated microglia in injured EphA4 knockout compared to wild-type spinal cords at two, four or fourteen days post-injury, however a lower proportion of Arginase-1 immunoreactive macrophages / activated microglia was observed in EphA4 knockout spinal cords at four days post-injury. Subtle alterations in the neuroinflammatory response in injured EphA4 knockout spinal cords may contribute to the regeneration and recovery observed in these mice following injury. Comparison was made between gene expression in wild-type and knockout samples both before and after injury. 3 replicates per group.
Project description:hM3Dq-expressing human iPS cell-derived neural cells were transplanted in the injured mouse spinal cord. Thereafter, transplanted cells were selectively stimulated daily by intraperitoneal injection of CNO. The spinal cord 14-days and 42-days after the injury were eviscerated for analyses.
Project description:Among the vertebrates, teleost and urodele amphibians are capable of regenerating their central nervous system. We have used crush injury method on zebrafish spinal cord, which is a common mammalian mode of injury in spinal cord. To identify the molecular mechanisms of the underlying cellular events during regeneration of zebrafish spinal cord, we have employed high density oligonucleotide microarrays and profiled the temporal transcriptome dynamics during the entire phenomenon. A total of 3842 genes expressed differentially with significant fold changes during spinal cord regeneration. Cluster analysis revealed event specific dynamic expression of genes related to inflammation, cell death, cell migration, cell proliferation, neurogenesis, neural patterning and axonal regrowth. We have also validated the expression pattern of 14 genes (which include inflammatory regulators, cell cycle regulators, pattern forming genes and signaling molecules) by different methodologies. Spatio-temporal analysis of STAT3 expression suggested its possible function in controlling inflammation and cell proliferation. Genes involved in the proliferating neural progenitors and their dorso-ventral patterning (sox2 and dbx2) are differentially expressed. Injury induced cell proliferation is controlled by many cell cycle regulators and some of them also show their common expression in other regenerating systems like fin, heart and retina. We also reported unusual expression pattern of certain pathway genes like one carbon folate metabolism and N-glycan biosynthesis which have not been reported during regeneration of spinal cord. Genes like stat3, socs3, atf3, mmp9 and sox11, which are known to control peripheral nervous system (PNS) regeneration in mammals, are also upregulated in zebrafish spinal cord injury (SCI) thus creating PNS like environment after injury. Our study provides a comprehensive genetic blue print of diverse cellular response(s) during regeneration of zebrafish spinal cord that could be used to induce successful regeneration in mammals. The spinal cord has been injured by crushing dorso-ventrally for 1 sec with a number 5 Dumont forceps at the level of 15th/16th vertebrae. Later the wound were sealed by placing a suture. Both spinal cord injured and sham operated fish were allowed to regenerate and the progress of regeneration was observed after 1, 3, 7, 10 and 15 days of injury. Zebrafishes were anesthetized deeply for 5 minutes in 0.1% tricaine (MS222; Sigma, USA) and approximately 1mm length of spinal cord both rostrally and caudally from injury epicenter were dissected out from 50-60 fishes in each batch and pooled for RNA extraction.