Project description:Phytoplasma, an emerging plant pathogen is an endocellular obligate parasite of plant phloem tissues with highly reduced genomes and low GC content. They contain a minimal set of genes essential for survival as an intracellular parasite. The role of G-Quadruplexes in pathogenicity has been reported in a variety of microbial pathogens. Detailed investigation on the genome wide occurrence and distribution of Putative G-Quadruplex forming Sequences (PGQSs) in the AT-rich genome of Onion yellows phytoplasma (strain OY-M) was carried out. Relative enrichment and depletion of these putative secondary structures in different genomic regions of OY-M was investigated with an aim to unravel their association with functionally important genomic locations. PGQSs density of 0.4407/Kbp was detected in the genome of OY-M phytoplasma, which is significantly higher than the average PGQSs density (0.136/Kbp) reported for other members of its phylum, namely Tenericutes. A non-random distribution of PGQSs across the length of the genome was observed. Putative promoter regions of OY-M were found to be particularly enriched in PGQSs followed by genic regions. The repeat rich regions were identified to have minimum PGQSs density. Presence of PGQSs in important genes such as those involved in secretory pathways of virulent factors, transport related functions, rRNA and tRNA was particularly intriguing. Our study reports for the first time a detailed investigation on the genome-wide locations of putative G-Quadruplexes in phytoplasma and highlights the need to further investigate their role in the metabolism and also in the mechanism of pathogenicity.
Project description:Transcriptional profiling of phytoplasma grown in plant (Chrysanthemum coronarium) and grown in insect (Macrosteles striifrons). Two-condition experiment, phytoplasma-infected plant and phytoplasma-infected insect. Biological replicates: 6 phytoplasma-infected plants and 6 phytoplasma-infected insects, independently grown and harvested. One replicate per array.
Project description:Transcriptional profiling of phytoplasma grown in plant (Chrysanthemum coronarium) and grown in insect (Macrosteles striifrons). Two-condition experiment, phytoplasma-infected plant and phytoplasma-infected insect. Biological replicates: 4 phytoplasma-infected plants and 4 phytoplasma-infected insects, independently grown and harvested. One replicate per array.
Project description:Aster yellows phytoplasma strain Hyd35 (16SrI-B) in micropropagated periwinkle shoots in collection was used to produce infected plants in pots that were separated according to the diverse symptomatology i.e. phyllody and witches’ broom. Small RNA high-throughput sequencing (HTS) was then used to determine the small RNA pattern of these plants. Bioinformatics analysis revealed the presence of expression changes of different miRNA classes and the presence of phytoplasma derived small RNAs. These results could complement previous studies and serve as a starting point for small RNA omics in phytoplasma research