Project description:A time-course transcriptomic analysis of bacteroids isolated from soybean plants inoculated with B. japonicum USDA 110, relative to cells cultured in HM-arabinose medium was performed to characterize senescence genes.
Project description:Soybean root hair transcriptional response to their inoculation by the symbiotic bacteria B. japonicum involved in soybean nodulation. We used the first generation of an Affymetrix microarray to quantify the abundance of the transcripts from soybean root hair cells inoculated and mock-inoculated by B. japonicum. This experiment was performed on a time-course from 6 to 48 hours after inoculation.
Project description:Bradyrhizobia are common members of soil microbiomes and known as N2-fixing symbionts of economically important legumes. Many are also denitrifiers, which can act as sinks or sources for N2O. Inoculation with compatible rhizobia is often needed for optimal N2-fixation, but the choice of inoculant may have consequences for N2O emission. Here, we determined the phylogeny and denitrification capacity of Bradyrhizobium strains, most of them isolated from peanut-nodules. Analyses of genomes and denitrification end-points showed that all were denitrifiers, but only ~1/3 could reduce N2O. The N2O-reducing isolates had strong preference for N2O- over NO3--reduction. Such preference was also observed in a study of other bradyrhizobia and tentatively ascribed to competition between the electron pathways to Nap (periplasmic NO3- reductase) and Nos (N2O reductase). Another possible explanation is lower abundance of Nap than Nos. Here, proteomics revealed that Nap was instead more abundant than Nos, supporting the hypothesis that the electron pathway to Nos outcompetes that to Nap. In contrast, Paracoccus denitrificans, which has membrane-bond NO3- reductase (Nar), reduced N2O and NO3- simultaneously. We propose that the control at the metabolic level, favoring N2O reduction over NO3- reduction, applies also to other denitrifiers carrying Nos and Nap but lacking Nar.
Project description:Soybean root hair transcriptional response to their inoculation by the symbiotic bacteria B. japonicum involved in soybean nodulation. We used the first generation of an Affymetrix microarray to quantify the abundance of the transcripts from soybean root hair cells inoculated and mock-inoculated by B. japonicum. This experiment was performed on a time-course from 6 to 48 hours after inoculation. Soybean seeds were sowed on sterile agar medium and grown for 3 days in a growth chamber before being treated with H2O (mock-inoculated) or B. japonicum (inoculated). Soybean root hair cells were isolated at different time points (6hr, 12hr, 18hr, 24hr, 36hr, 48hr) after treatment. For each time point and condition, 3 or 4 independent biological replicates were produced.
Project description:A time-course transcriptomic analysis of bacteroids isolated from soybean plants inoculated with B. japonicum USDA 110, relative to cells cultured in HM-arabinose medium was performed to characterize senescence genes. Four independent biological materials for bacteroids and free-living cells at 6 time points. Seven or eight arrays including dye swap are presented at each time point.
Project description:Expression data from B. japonicum soybean root nodules including a nodulation time-course experiment with soybean nodules harvested at 10, 13, 21 and 31 dpi and transcriptome of bacteroids formed by a mutant defective in the RNA polymerase transcription factor sigma 54. Two reference data sets were established using B. japonicum cells grown in PSY medium under either aerobic or micro-aerobic conditions. Keywords: genetic modification, time course, growth conditions
Project description:A transcriptomic analysis of bacteroids isolated from soybean plants inoculated with B. japonicum USDA 110, relative to cells cultured in HM-arabinose medium was performed and the results combined with two other transcriptomic analyses to form a reiterated pool of transcripts that define genes essential for symbiotic nitrogen fixation.
Project description:Metabolomics and transcriptomics of Bradyrhizobium diazoefficiens-induced root nodules Bradyrhizobium diazoefficiens is a nitrogen-fixing endosymbiont, which can grow inside root-nodule cells of the agriculturally important soybean and other host plants. Our previous studies described B. diazoefficiens host-specific global expression changes occurring during legume infection at the transcript and protein level. In order to further characterize nodule metabolism, we here determine by flow injection -time of flight mass spectrometry analysis the metabolome of i) nodules and roots from four different B. diazoefficiens host plants, ii) soybean nodules harvested at different time points during nodule development, and iii) soybean nodules infected by two strains mutated in key genes for nitrogen fixation, respectively. Ribose (soybean), tartaric acid (mungbean), hydroxybutanoyloxybutanoate (siratro) and catechol (cowpea) were among the metabolites found to be specifically elevated in one of the respective host plants. While the level of C4-dicarboxylic acids decreased during soybean nodule development, we observed an accumulation of trehalose-phosphate at 21 days post infection (dpi). Moreover, nodules from non-nitrogen-fixing bacteroids (nifA and nifH mutants) showed specific metabolic alterations; these were also supported by transcriptomics data that was generated for the two mutant strains and were helpful to separate for some examples the respective bacterial and plant contributions to the metabolic profile. The alterations included signs of nitrogen limitation in both mutants, and an increased level of a phytoalexin in nodules induced by the nifA mutant, suggesting that the tissue of these nodules exhibits defense and stress reactions.