Project description:Transcriptome analysis of Wigglesworthia glossinidia endosymbiont derived from uninfected and infected samples at 3 time points (3, 10 and 20 days). Expression profiling by array - Wigglesworthia glossinidia endosymbiont of Glossina morsitans morsitans
Project description:Transcriptional profiling of mouse 4T1 breast cancer cells stably tranduced with pLEX-MCS based lentivirus. Three groups were compared, Vector cells, SNAIL expressing cells; and SNAIL+FBXO11 expressing cells. SNAIL expression induced strong EMT phenotype while SNAIL/FBXO11 reversed cells back to epithelial cells.
Project description:Transcriptional profiling of mouse HMLEN breast cancer cells (HMLE cells transformed with -Neu oncogene) stably tranduced with pLEX-MCS based lentivirus. Three groups were compared, Vector cells, SNAIL expressing cells; and SNAIL+FBXO11 expressing cells. SNAIL expression induced strong EMT phenotype while SNAIL/FBXO11 reversed cells back to epithelial cells.
Project description:Transcriptome analysis of Wigglesworthia glossinidia endosymbiont derived from control samples with or without parasite contact at 10 days. Expression profiling by array - Wigglesworthia glossinidia endosymbiont of Glossina morsitans morsitans
2015-07-01 | GSE55991 | GEO
Project description:Genome sequencing of scaly-foot gastropod Chrysomallon squamiferum
Project description:Transcriptome analysis of Wigglesworthia glossinidia endosymbiont derived from control samples with or without parasite contact at 10 days. Expression profiling by array - Wigglesworthia glossinidia endosymbiont of Glossina morsitans morsitans RNAs are a mix of Wigglesworthia, Sodalis and glossina. RNAs were extracted from 8 samples including 2 conditions (with 4 replicates per condition).
Project description:We report the application of Cappable-seq to selectively enrich prokaryotic endosymbiont transcripts from mixed host-symbiont total RNA.
Project description:The majority of bacterial genomes have high coding efficiencies, but there are an few genomes of the intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50% pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple omic strategies: combining single molecule DNA-sequencing and annotation; stranded RNA-sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53% and 74% of the Sodalis transcriptome remains active in cell-free culture. Mean sense transcription from Coding Domain Sequences (CDS) is four-times greater than that from pseudogenes. Core-genome analysis of six Illumina sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40% of the 2,729 genes in the core genome, suggesting are stable and/or Sodalis is a recent introduction across the Glossina genus as a facultative symbiont. These data further shed light on the importance of transcriptional and translational control in deciphering host-microbe interactions, and demonstrate that pseudogenes are more complex than a simple degrading DNA sequence. For this reason, we show that combining genomics, transcriptomics and proteomics represents an important resource for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches.
Project description:The main goal of the project was to analyze the effect of SNAIL transcription factor on microRNA expression profile in rhabdomyosarcoma (RMS) cells using the next generation sequencing. Differential expression of microRNAs between three groups was compared in RH30 alveolar RMS cells: WT (WT), shCTRL (modified with control shRNA vector) and shSNAIL (modified with shRNA against SNAIL). Different groups were compared to investigate the effect of SNAIL silencing on microRNA up- or downregulation.