Project description:Mulberry (Morus spp.) is an economically important plant as the main food plant used for rearing domesticated silkworm and it has multiple uses in traditional Chinese medicine. Two basic chromosome numbers (Morus notabilis, n = 7, and Morus alba, n = 14) have been reported in the genus Morus, but the evolutionary history and relationship between them remain unclear. In the present study, a 335-Mb high-quality chromosome-scale genome was assembled for the wild mulberry species M. notabilis. Comparative genomic analyses indicated high chromosomal synteny between the 14 chromosomes of cultivated M. alba and the six chromosomes of wild M. notabilis. These results were successfully verified by fluorescence in situ hybridization. Chromosomal fission/fusion events played crucial roles in the chromosome restructuring process between M. notabilis and M. alba. The activity of the centromere was another key factor that ensured the stable inheritance of chromosomes. Our results also revealed that long terminal repeat retrotransposons were a major driver of the genome divergence and evolution of the mulberry genomes after they diverged from each other. This study provides important insights and a solid foundation for studying the evolution of mulberry, allowing the accelerated genetic improvement of cultivated mulberry species.
Project description:Enterobacter mori is a plant-pathogenic enterobacterium responsible for the bacterial wilt of Morus alba L. Here we present the draft genome sequence of the type strain, LMG 25706. To the best of our knowledge, this is the first genome sequence of a plant-pathogenic bacterium in the genus Enterobacter.
| S-EPMC3133321 | biostudies-literature
Project description:Establishment of sex-specific DNA markers for Amur catfish
Project description:BACKGROUND: Anthracnose, caused by Colletotrichum dematium, is a serious threat to the production and quality of mulberry leaves in susceptible varieties. Control of the disease has been a major problem in mulberry cultivation. Some strains of Burkholderia cepacia were reported to be useful antagonists of plant pests and could increase the yields of several crop plants. Although B. cepacia Lu10-1 is an endophytic bacterium obtained from mulberry leaves, it has not been deployed to control C. dematium infection in mulberry nor its colonization patterns in mulberry have been studied using GFP reporter or other reporters. The present study sought to evaluate the antifungal and plant-growth-promoting properties of strain Lu10-1, to clarify its specific localization within a mulberry plant, and to better understand its potential as a biocontrol and growth-promoting agent. RESULTS: Lu10-1 inhibited conidial germination and mycelial growth of C. dematium in vitro; when applied on leaves or to the soil, Lu10-1 also inhibited the development of anthracnose in a greenhouse, but the effectiveness varied with the length of the interval between the strain treatment and inoculation with the pathogen. Strain Lu10-1 could survive in both sterile and non-sterile soils for more than 60 days. The strain produced auxins, contributed to P solubilization and nitrogenase activity, and significantly promoted the growth of mulberry seedlings. The bacteria infected mulberry seedlings through cracks formed at junctions of lateral roots with the main root and in the zone of differentiation and elongation, and the cells were able to multiply and spread, mainly to the intercellular spaces of different tissues. The growth in all the tissues was around 1-5 × 105 CFU per gram of fresh plant tissue. CONCLUSIONS: Burkholderia cepacia strain Lu10-1 is an endophyte that can multiply and spread in mulberry seedlings rapidly and efficiently. The strain is antagonistic to C. dematium and acts as an efficient plant-growth-promoting agent on mulberry seedlings and is therefore a promising candidate as a biocontrol and growth-promoting agent.
Project description:The individual parts of Morus alba L. including root bark, branches, leaves, and fruits are used as a cosmetic ingredient in many Asian countries. This study identified several anti-melanogenesis constituents in a 70% ethanol extract of M. alba leaves. The ethyl acetate fraction of the initial ethanol extract decreased the activity of tyrosinase, a key enzyme in the synthetic pathway of melanin. Twelve compounds were isolated from this fraction and their structures were identified based on spectroscopic spectra. Then, the authors investigated the anti-melanogenesis effects of the isolated compounds in B16-F10 mouse melanoma cells. Compounds 3 and 8 significantly inhibited not only melanin production but also intracellular tyrosinase activity in alpha-melanocyte-stimulating-hormone (α-MSH)-induced B16-F10 cells in a dose-dependent manner. These same compounds also inhibited melanogenesis-related protein expression such as microphthalmia-associated transcription factor (MITF), tyrosinase, and tyrosinase-related protein-1 (TRP-1). Compound 3 modulated the cAMP-responsive element-binding protein (CREB) and p38 signaling pathways in α-MSH-activated B16-F10 melanoma cells, which resulted in the anti-melanogenesis effects. These results suggest that compound 3, isolated from M. alba leaves, could be used to inhibit melanin production via the regulation of melanogenesis-related protein expression.
Project description:The fruit of Morus alba L. (MAF) has been consumed as a food worldwide. MAF has also been widely used in traditional medicine for thousands of years in East Asia, and its diverse bioactivities have been reported in numerous publications. However, no prokinetic activity has been reported for MAF or its components. In the present study, therefore, we investigated the effects of MAF on gastrointestinal motor function by measuring the intestinal transit rate (ITR) of Evans blue in mice in vivo. The ITR values accelerated by MAF were significantly higher than those accelerated by cisapride or metoclopramide, suggesting that MAF has potential as a new prokinetic agent to replace cisapride and metoclopramide. We also investigated the effects of MAF on myogenic and neurogenic contractions in human intestinal smooth muscles by measuring spontaneous contractions of smooth muscle strips, smooth muscle contractions induced by neural stimulation, and migrating motor complexes from intestinal segments in the human ileum and sigmoid colon in situ. MAF increased both myogenic and neurogenic contractions to enhance ileal and colonic motility in the human intestine. Taken together, these results indicate that MAF enhanced intestinal motility by increasing both myogenic and neurogenic contractions, thereby accelerating the ITR.
Project description:The leaves of Morus alba L. are an important herbal medicine in Asia. The systematic isolation of the metabolites of the leaves of Morus alba L. was achieved using a combination of liquid chromatography techniques. The structures were elucidated by spectroscopic data analysis and the absolute configuration was determined based on electronic circular dichroism (ECD) spectroscopic data and hydrolysis experiments. Their biological activity was evaluated using different biological assays, such as the assessment of their capacity to inhibit the aldose reductase enzyme; the determination of their cytotoxic activity and the evaluation of their neuroprotective effects against the deprivation of serum or against the presence of nicouline. Chemical investigation of the leaves of Morus alba L. resulted in four new structures 1⁻4 and a known molecule 5. Compounds 2 and 5 inhibited aldose reductase with IC50 values of 4.33 μM and 6.0 μM compared with the potent AR inhibitor epalrestat (IC50 1.88 × 10−3 μM). Pretreatment with compound 3 decreased PC12 cell apoptosis subsequent serum deprivation condition and pretreatment with compound 5 decreased nicouline-induced PC12 cell apoptosis as compared with control cells (p < 0.001).
Project description:Phytochemical investigation of the root bark of Morus alba has led to the isolation and identification of three new isoprenylated flavonoids, namely sanggenon U (1), sanggenon V (2), and sanggenon W (3), along with four known isoprenylated flavonoids: euchrenone a? (4), sanggenon J (5), kuwanon E (6), and kuwanon S (7). All compounds were isolated by repeated silica gel (SiO?), octadecyl SiO? (ODS), and Sephadex LH-20 open column chromatography. The structure of the compounds were determined based on spectroscopic analyses, including nuclear magnetic resonance (NMR), mass spectrometry (MS), circular dichroism (CD), and infrared (IR). In addition, compounds 1-4 were isolated for the first time from the root bark of M. alba in this study.