Project description:Plasmodium falciparum gametocyte stages represent a small fraction of the entire parasite biomass that is present during human malaria infection, yet they alone lead to the transmission of this devastating disease. One of the critical gaps in malaria transmission biology and surveillance is our lack of knowledge about gametocyte biology, especially sexual dimorphic development that may influence transmission from the human to the mosquito. Ratios of male and female gametocytes in the peripheral blood can vary significantly; influenced in part by asexual blood stage and gametocyte density as well as vertebrate and invertebrate host factors. Moreover, the role of sex ratios on gametocyte transmission potential to mosquitoes is unknown and dissecting this process has been hampered by the lack of sex-specific protein markers for the circulating, mature stage V gametocytes. The current evidence suggests a high degree of conservation in gametocyte gene complement across Plasmodium, and therefore presumably for sex-specific genes as well. Therefore, to better our understanding of gametocyte development and subsequent infectiousness to mosquitoes, we undertook a two pronged approach. First, we acquired the mixed, male and female stage V gametocyte proteomes of the NF54 isolate and mature stage V female proteome from Dd2, a strain that is defective in producing mature males. Second, we then undertook a Systematic Subtractive Bioinformatic analysis (filtering) approach to identify sex-specific P. falciparum NF54 protein markers based on a comparison with the Dd2 strain and syntenic male and female proteins from the reanalyzed and updated P. berghei (related rodent malaria parasite) gametocyte proteomes. This has produced a short list of putative 174 male- and 258 female-specific P. falciparum stage V proteins. Furthermore, we generated antibodies against three putative female-specific gametocyte stage V proteins in P. falciparum and confirmed sex-specificity for two proteins and also the loss sex-partitioning for a putative female-specific protein in rodent malaria parasites.
2014-07-25 | PXD000813 | Pride
Project description:Albacore Genome Assembly and identification fo Sex Markers
| PRJNA381269 | ENA
Project description:Identification of sex-specific markers in the Blotched snakehead (Channa maculata) using a genome sequencing method