Project description:Rice is one of the most important global food crops, and is also a model organism for cereal research 31 . Complete genome sequencing of rice, together with advances in transcriptomics and proteomics, has had a dramatic impact on plant growth and 5 breeding programs 32 . Genomic analysis of DNA methylation in rice has revealed methylation patterns associated with gene bodies and promoters, and the occurrence of high levels of DNA methylation in the centromeric domain 33 . A genome-wide investigation of acetylation in rice revealed that H3K9ac and H3K27ac are mainly enriched at transcription start sites associated with active transcription 34 . Furthermore, global proteome analysis has shown that phosphorylation and succinylation are involved in diverse cellular and metabolic processes 35, 36 . However, despite these considerable advances in our knowledge, additional large-scale analysis of the lysine acetylome in rice is expected to identify many more Kac sites and acetylated proteins in this improtant crop plant. In this study, affinity enrichment and high-resolution LC-MS/MS were used for large-scale analysis of the lysine acetylome in rice variety Nipponbare. In total, 1353 lysine acetylation sites were detected in 866 protein groups in rice seedlings. Proteomic analysis showed that Kac occurs in proteins involved in diverse biological processes with varied cellular functions and subcellular localization.
Project description:This experiment was designed to identify transcribed regions of japonica subspecies of the rice genome. A series of high-density oligonucleotide tiling arrays that represent sense and antisense strands of the entire nonrepetitive sequence of all the 12 chromosomes were designed to measure genome-wide transcription. A total of 12253842 36mer oligonucleotide probes positioned every 46 nt on average were used for this purpose. The probes were synthesized via maskless photolithography at a feature density of approximately 389,000 probes per slide. The arrays were hybridized with fluorescence-labeled cDNA reverse-transcribed from equal amounts of four selected poly(A)+ RNA population (seedling root, seedling shoot, panicle, and suspension cultured cells). Keywords: tiling array, genome-wide transcription
Project description:Using acRIP-seq, we present transcriptome-wide atlases of ac4C in Arabidopsis thaliana and Oryza sativa. Analysis of ac4C distribution reveals ac4C is enriched near translation start sites in rice while near translation start sites and end sites in Arabidopsis. Further analysis shows ac4C contributes to RNA stability, splicing and translation. We then performed NaCNBH3 treatment and RNA-seq to measure C to T mutation and RNC-seq to measure translation efficiency in Arabidopsis.
Project description:Lysine acetylation is a dynamic and reversible post-translational modification that plays an imporant role in the gene transcription regulation. Here, we report high quality proteome-scale data for lysine-acetylation sites and proteins in rice (Oryza sativa). A total of 1337 Kac sites in 716 Kac proteins with diverse biological functions and subcellular localizations were identified in rice seedlings.
Project description:The osdcl4-1 mutant exhibits much severer developmental defects than dcl4 in Arabidopsis, suggesting that Os DCL4 may process broader substrates in rice. By deep sequencing of small RNAs from different tissues of wild types and osdcl4-1, we revealed that 21-nucleotide siRNAs were largely dependent on Os DCL4. Besides several tasiRNA loci reported in Arabidopsis and rice, over one thousand 21-nucleotide and several dozen 24-nucleotide phased siRNA (phasiRNA) clusters were identified in panicles but not in seedlings and grains. Further analyses identified two conserved 22-nucleotide motifs among the cleavage sites of the 21- and 24- phasiRNA loci, and the cleavage sites of over 90% of 21- and 24-nucleotide phasing clusters were confirmed by PARE/degradome analysis from 93-11 panicles. MiR2118 and miR2275, expressed specifically in panicles, were predicted to trigger cleavages at 21- and 24-nucleotide phasiRNA clusters, respectively. The triggers of phasiRNAs are more dependent on Os DCL4 than Os DCL1. Furthermore, the processing of 21-nucleotide phasiRNAs was largely Os DCL4-dependent, whereas the processing of 24-nucleotide phasiRNAs was slightly affected by Os DCL4, but not by Os DCL3a and Os DCL1. Our results revealed distinct roles of Os DCL4 in a novel 21- and 24-nucleotide phasiRNA biogenesis pathway in rice. Six small RNA libraries were constructed from seedlings and panicles of 93-11 (a wild-type Indica rice variety) and osdcl4-1, as well as those from Nipponbare panicles and seedlings (a wild-type Japonica rice variety).
Project description:5 leaves old rice plantlets were infected with Magnaporthe grisea spores and zero, two hours and twenty four houres after infection samples were collected
Project description:The osdcl4-1 mutant exhibits much severer developmental defects than dcl4 in Arabidopsis, suggesting that Os DCL4 may process broader substrates in rice. By deep sequencing of small RNAs from different tissues of wild types and osdcl4-1, we revealed that 21-nucleotide siRNAs were largely dependent on Os DCL4. Besides several tasiRNA loci reported in Arabidopsis and rice, over one thousand 21-nucleotide and several dozen 24-nucleotide phased siRNA (phasiRNA) clusters were identified in panicles but not in seedlings and grains. Further analyses identified two conserved 22-nucleotide motifs among the cleavage sites of the 21- and 24- phasiRNA loci, and the cleavage sites of over 90% of 21- and 24-nucleotide phasing clusters were confirmed by PARE/degradome analysis from 93-11 panicles. MiR2118 and miR2275, expressed specifically in panicles, were predicted to trigger cleavages at 21- and 24-nucleotide phasiRNA clusters, respectively. The triggers of phasiRNAs are more dependent on Os DCL4 than Os DCL1. Furthermore, the processing of 21-nucleotide phasiRNAs was largely Os DCL4-dependent, whereas the processing of 24-nucleotide phasiRNAs was slightly affected by Os DCL4, but not by Os DCL3a and Os DCL1. Our results revealed distinct roles of Os DCL4 in a novel 21- and 24-nucleotide phasiRNA biogenesis pathway in rice.
Project description:Chitin is a major component of fungal cell walls and serves as a molecular pattern for the recognition of potential pathogens in the innate immune systems of both plants and animals. In plants, chitin oligosaccharides have been known to induce various defense responses in a wide range of plant cells including both monocots and dicots. We identified chitine oligosaccharide-responsive genes in suspension-cultured rice cells 1-12 h after treatment using rice 44k microarray.
Project description:MicroRNAs (miRNAs) and small interfering RNAs (siRNAs) regulate gene expression in eukaryotes. Plant miRNAs modulate their targets mainly via messenger RNA (mRNA) cleavage. Small RNA targets have been extensively investigated in Arabidopsis using computational prediction, experimental validation, and degradome sequencing. However, small RNA targets are largely unknown in rice (Oryza sativa). Here, we report global identification of small RNA targets using high throughput degradome sequencing in the rice indica cultivar 93-11 (Oryza sativa L. ssp. indica). 177 transcripts targeted by total of 87 unique miRNAs were identified. Of targets for the conserved miRNAs between Arabidopsis and rice, transcription factors comprise around 70% (58 in 82), indicating that these miRNAs act as masters of gene regulatory nodes in rice. In contrast, non-conserved miRNAs targeted diverse genes which provide more complex regulatory networks. In addition, 5 AUXIN RESPONSE FACTORS (ARF) cleaved by the TAS3 derived ta-siRNAs were also detected. A total of 40 sRNA targets were further validated via RNA ligase-mediated 5’ rapid amplification of cDNA ends (RLM 5’-RACE). Our degradome results present a detailed sRNA-target interaction atlas, which provides a guide for the study of the roles of sRNAs and their targets in rice.