Project description:We investigated genome-wide changes in mRNA translation in Arabidopsis thaliana suspension cell cultures exposed to brief perids of two types of stress: elevated temperature (37 degree_C) and high salinity (200 mM NaCl). To this end, we subjected polysomal RNA and non-polysomal RNA from sucrose gradient fractionated cell lysates to the co-hybridization on Agilent Arabidopsis 3 Oligo Microarrays. The ratio of signal intensities (polysomal RNA: non-polysomal RNA) was used as an indicator of the translation state for each transcript. To inspect coordination of changes in translational profiles with transcriptional profiles, we also isolated total RNAs from the same cells used for translational profiling experiments and investigated changes in accumulated transcript levels in response to each stress using the microarray. Two biological replicates were analyzed.
Project description:Ascophyllum nodosum extract induced salinity tolerance in Arabidopsis thaliana We used microarrays to detail the global programme of gene expression underlying ANE mediated salinity tolerance in the Arabidopsis thaliana
Project description:In this study we explain the physiological, biochemical and gene expression mechanisms adopted by ammonium nitrate-fed Arabidopsis thaliana plants growing under elevated [CO2], highlighting the importance of root-to-shoot interactions in these responses A transcriptomic analysis enabled the identification of photoassimilate allocation and remobilization as fundamental process used by the plants to maintain the outstanding photosynthetic performance. Moreover, based on the relationship between plant carbon status and hormone functioning, the transcriptomic analyses provided an explanation of why phenology accelerates in elevated [CO2] conditions.
Project description:In this study we explain the physiological, biochemical and gene expression mechanisms adopted by ammonium nitrate-fed Arabidopsis thaliana plants growing under elevated [CO2], highlighting the importance of root-to-shoot interactions in these responses A transcriptomic analysis enabled the identification of photoassimilate allocation and remobilization as fundamental process used by the plants to maintain the outstanding photosynthetic performance. Moreover, based on the relationship between plant carbon status and hormone functioning, the transcriptomic analyses provided an explanation of why phenology accelerates in elevated [CO2] conditions.
Project description:Micro RNAs (miRNAs) are a class of small endogenous RNAs conserved in eukaryotic organisms including plants. They suppress gene expression post-transcriptionally in many different biological processes. Previously, we reported salinity-induced changes in gene expression in transgenic Arabidopsis thaliana plants that constitutively expressed a pea abscisic acid-responsive (ABR17) gene. In the current study, we used a microarray to investigate the role of miRNA-mediated post-transcriptional gene regulation in these same transgenic plants in the presence and absence of salinity stress. We identified nine miRNAs that were significantly modulated due to ABR17 gene expression, and seven miRNAs that were modulated in response to salt stress. The target genes regulated by these miRNAs were identified using starBase (sRNA target Base) Degradome analysis and through 5' RNA Ligase Mediated-Rapid Amplification of cDNA Ends (RLM-RACE). Our findings revealed miRNA:mRNA interactions comprising regulatory networks of Auxin Response Factor (ARF), ARGONAUTE 1, (AGO1), Dicer-like proteins 1 (DCL1), Squamosa Promoter Binding (SPB), NAC, APETALA 2 (AP2), Nuclear Factor-Y (NFY), RNA binding proteins, Arabidopsis thaliana vacuolar phyrophosphate 1 (AVP1) and Pentatricopetide repeat (PPR) in ABR17 transgenic A. thaliana, which control physiological, biochemical and stress signalling cascades due to the imposition of salt stress. Our results are discussed within the context of the effect of the transgene, ABR17, and the roles miRNA expression may play in mediating plant responses to salinity.
Project description:Expression profiles of MicroRNA and SiRNA of Arabidopsis thaliana Col-0 and transgenic plants with constitutive expression of the chimeric receptors NRG1 grown at different temperature To reveal the underlying molecular mechanism of de-cosuppression with memory by high temperature in Arabidopsis, we performed the expression profiles of microRNA and SiRNA in transgenic plants with constitutive expression of the chimeric receptors NRG1 and wide type Col-0 grown at different temperature using the Custom LC Sciences Arabidopsis microRNA and SiRNA array. Keywords: high temperature, de-cosuppression, MicroRNA, SiRNA