Project description:Thymic epithelial cells govern thymic T lymphocyte differentiation and selection. Medullary TECs (mTECs) facilitate the negative selection of self-reactive thymocytes and the differentiation of FOXP3+ regulatory T cells. Medullary TECs are also distinctive for their “promiscuous” gene expression, transcribing thousands of peripheral tissue genes (PTG) that are otherwise only expressed highly in one or two other organs. Much of this PTG expression by mTECs is controlled by the autoimmune regulator, AIRE. To probe the mechanism by which KAT7 promotes AIRE function, we performed ATAC-seq to compare chromatin accessibility in MHCII-high medullary thymic epithelial cells from Kat7-knockout and wildtype mice.
Project description:Aire is a transcriptional regulator that induces promiscuous expression of thousands of tissue-restricted antigen (TRA) genes in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs regulating its own expression remain elusive. We used Affymetrix microarrays to analyze the gene expression patterns of Aire expressing cells (mature mTECs and Thymic B cells) and compared them to control counterparts, namely immature mTECs, cortical Thymic epithelial cells and splenic B cells of tissue-restricted antigen (TRA) genes in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs regulating its own expression remain elusive. We’ve used Assay for transposase-accessible chromatin using sequencing (ATAC-Seq) on the different thymic epithelial cell populations to assess chromatin accessibility around the Aire locus in these cells. Moreover, we’ve used the indexing-first chromatin immunoprecipitation (iChIP) technique to assess the occupancy of the Irf8 transcription factor in the Aire locus
Project description:Aire is a transcriptional regulator that induces promiscuous expression of thousands of tissue-restricted antigen (TRA) genes in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs regulating its own expression remain elusive. We used Affymetrix microarrays to analyze the gene expression patterns of Aire expressing cells (mature mTECs and Thymic B cells) and compared them to control counterparts, namely immature mTECs, cortical Thymic epithelial cells and splenic B cells of tissue-restricted antigen (TRA) genes in medullary thymic epithelial cells (mTECs). While the target genes of Aire are well characterized, the transcriptional programs regulating its own expression remain elusive. We’ve used Assay for transposase-accessible chromatin using sequencing (ATAC-Seq) on the different thymic epithelial cell populations to assess chromatin accessibility around the Aire locus in these cells. Moreover, we’ve used the indexing-first chromatin immunoprecipitation (iChIP) technique to assess the occupancy of the Irf8 transcription factor in the Aire locus