Project description:Strains of a novel anaerobic, Gram-negative coccus were isolated from the supra-gingival plaque of children. Independent strains from each of six subjects were shown, at a phenotypic level and based on 16S rRNA gene sequencing, to be members of the genus Veillonella. Analysis revealed that the six strains shared 99.7 % similarity in their 16S rRNA gene sequences and 99.0 % similarity in their rpoB gene sequences. The six novel strains formed a distinct group and could be clearly separated from recognized species of the genus Veillonella of human or animal origin. The novel strains exhibited 98 and 91 % similarity to partial 16S rRNA and rpoB gene sequences of Veillonella parvula ATCC 10790(T), the most closely related member of the genus. The six novel strains could be differentiated from recognized species of the genus Veillonella based on partial 16S rRNA and rpoB gene sequencing. The six novel strains are thus considered to represent a single novel species of the genus Veillonella, for which the name Veillonella rogosae sp. nov. is proposed. The type strain is CF100(T) (=CCUG 54233(T)=DSM 18960(T)).
Project description:Veillonella parvula is a biofilm-forming commensal found in the lungs, vagina, mouth, and gastro-intestinal tract of humans, yet it may also develop into an opportunistic pathogen. Furthermore the presence of Veillonella has been associated with the development of a healthy immune system in infants. Veillonella belongs to the Negativicutes, a diverse clade of bacteria that represent an evolutionary enigma: they are phylogenetically placed within Gram-positive (monoderm) Firmicutes yet maintain an outer membrane (OM) with lipopolysaccharide similar to classic Gram-negative (diderm) bacteria. The OMs of Negativicutes have unique characteristics, such as the replacement of Braun’s lipoprotein by OmpM for anchoring the outer membrane to the peptidoglycan. Through phylogenomic analysis, we have recently provided the first bioinformatic annotation of the Negativicute diderm cell envelope. We showed that it is a unique type of envelope that was present in the ancestor of present-day Firmicutes and lost multiple times independently in this phylum, giving rise to the monoderm architecture. However, little experimental data is presently available for any Negativicute cell envelope. Here, we have performed the first experimental proteomic characterization of the cell envelope of these atypical diderm Firmicutes, producing an OM proteome of Veillonella parvula. We initially conducted a thorough bioinformatics analysis of all 1844 predicted proteins from Veillonella parvula DSM 2008’s genome using seven different localization prediction programs. These results were then complemented by protein extraction with surface exposed protein tags and subcellular fractionation, which were then sequenced by liquid chromatography tandem mass spectrometry. The merging of proteomics and bioinformatics results allowed identification of 76 OM proteins. Their annotation markedly extends previous inferences on the nature of the cell envelope of Negativicutes, and provides important information on the role of OM systems in the lifestyle of Veillonella.