Project description:This SuperSeries is composed of the following subset Series:; GSE5388: Adult postmortem brain tissue (dorsolateral prefrontal cortex) in subjects with bipolar disorder; GSE5389: Adult postmortem brain tissue (ortibtofrontal cortex) in subjects with bipolar disorder; Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex and orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls. Experiment Overall Design: Refer to individual Series
Project description:Reduced representation bisulfite sequencing (RRBS) was conducted on dorsolateral prefrontal cortex tissue samples taken from the brains of control individuals not affected by neurological disorder DNA methylation profiling was conducted using RRBS and the Illumina Genome Analyzer IIx
Project description:Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex) from patients with bipolar disorder and matched healthy controls. A cohort of 70 subjects was investigated and the final analysis included 30 bipolar and 31 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing.
Project description:Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex and orbitofrontal cortex) from patients with bipolar disorder and matched healthy controls. This SuperSeries is composed of the SubSeries listed below.
Project description:Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors with small effect sizes are collectively associated with the pathophysiology of BD, the underlying molecular mechanisms, especially how environmental factors affect the brain genome, remain largely unknown. We revealed neuronal cell-type-specific, pathophysiology-related DNA methylation changes in the prefrontal cortex (PFC) of BD patients, highlighting the importance of the neural epigenome for understanding BD.
Project description:Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors with small effect sizes are collectively associated with the pathophysiology of BD, the underlying molecular mechanisms, especially how environmental factors affect the brain genome, remain largely unknown. We revealed neuronal cell-type-specific, pathophysiology-related DNA methylation changes in the prefrontal cortex (PFC) of BD patients, highlighting the importance of the neural epigenome for understanding BD.
Project description:Bipolar disorder (BD) is a severe mental disorder characterized by repeated mood swings. Although genetic factors with small effect sizes are collectively associated with the pathophysiology of BD, the underlying molecular mechanisms, especially how environmental factors affect the brain genome, remain largely unknown. We revealed neuronal cell-type-specific, pathophysiology-related DNA methylation changes in the prefrontal cortex (PFC) of BD patients, highlighting the importance of the neural epigenome for understanding BD.
Project description:Bipolar affective disorder is a severe psychiatric disorder with a strong genetic component but unknown pathophysiology. We used microarray technology (Affymetrix HG-U133A GeneChips) to determine the expression of approximately 22 000 mRNA transcripts in post-mortem brain tissue (dorsolateral prefrontal cortex) from patients with bipolar disorder and matched healthy controls. A cohort of 70 subjects was investigated and the final analysis included 30 bipolar and 31 control subjects. Differences between disease and control groups were identified using a rigorous statistical analysis with correction for confounding variables and multiple testing. Keywords: disease state analysis
Project description:Background: Schizophrenia is a severe neuropsychiatric disorder that is hypothesized to result from disturbances in early brain development, and there is mounting evidence to support a role for developmentally-regulated epigenetic variation in the molecular etiology of the disorder. Here, we describe a systematic study of schizophrenia-associated methylomic variation in the adult brain and its relationship to changes in DNA methylation across human fetal brain development. Results: We profile methylomic variation in matched prefrontal cortex and cerebellum brain tissue from schizophrenia patients and controls, identifying disease-associated differential DNA methylation at multiple loci, particularly in the prefrontal cortex, and confirming these differences in an independent set of adult brain samples. Our data reveal discrete modules of co-methylated loci associated with schizophrenia that are enriched for genes involved in neurodevelopmental processes and include loci implicated by genetic studies of the disorder. Methylomic data from human fetal cortex samples, spanning 23 to 184 days post-conception, indicates that disease-associated differentially methylated positions are significantly enriched for loci at which DNA methylation is dynamically altered during human fetal brain development. Conclusions: Our data support the hypothesis that schizophrenia has an important early neurodevelopmental component, and suggest that epigenetic mechanisms may mediate these effects. 33 post-mortem brain (prefrontal cortex) samples (18 schizophrenia cases and 15 controls) were obtained from Douglas Bell-Canada Brain Bank (DBCBB), Montreal, Canada. Bisulfite converted DNA from these samples were hybridised to the Illumina Infinium 450k Human Methylation Beadchip v1.0.
Project description:Reduced representation bisulfite sequencing (RRBS) was conducted on dorsolateral prefrontal cortex tissue samples taken from the brains of control individuals not affected by neurological disorder