Project description:The microbiologically influenced corrosion is one of the serious problems in petroleum tanks. It was found that the methanogenic archaea Methanococcus maripaludis OS7 isolated from the inside of petroleum tanks has the iron corrosive property. To identify the genes related to the iron corrosion, we have performed proteome analysis of iron-corrosive archaeon M. maripaludis OS7 and its corrosion-defective mutant.
Project description:Nitrate-reducing iron(II)-oxidizing bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture KS. Raw sequencing data of 16S rRNA amplicon sequencing, shotgun metagenomics (short reads: Illumina; long reads: Oxford Nanopore Technologies), metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA682552. This dataset contains proteomics data for 2 conditions (heterotrophic and autotrophic growth conditions) in triplicates.
Project description:Nitrate-reducing iron(II)-oxidizing (NDFO) bacteria are widespread in the environment contribute to nitrate removal and influence the fate of the greenhouse gases nitrous oxide and carbon dioxide. The autotrophic growth of nitrate-reducing iron(II)-oxidizing bacteria is rarely investigated and poorly understood. The most prominent model system for this type of studies is enrichment culture KS, which originates from a freshwater sediment in Bremen, Germany. A second NDFO culture, culture BP, was obtained with a sample taken in 2015 at the same pond and cultured in a similar way. To gain insights in the metabolism of nitrate reduction coupled to iron(II) oxidation under in the absence of organic carbon and oxygen limited conditions, we performed metagenomic, metatranscriptomic and metaproteomic analyses of culture BP. Raw sequencing data of 16S rRNA amplicon sequencing (V4 region with Illumina and near full-length with PacBio), shotgun metagenomics, metagenome assembly, raw sequencing data of shotgun metatranscriptomes (2 conditions, triplicates) can be found at SRA in https://www.ncbi.nlm.nih.gov/bioproject/PRJNA693457. This dataset contains proteomics data for 2 conditions in triplicates. Samples R23, R24, and R25 are grown in autotrophic conditions, samples R26, R27, and R28 in heterotrophic conditions.
Project description:To identify the mechanism of Microbial Influenced Corrosion (MIC) and the bacterial response toward corrosion, we conducted whole genome microarray expression profile. At log phase, the cell of Clostridium carboxidivorans using iron granule as an electron donor (corroding iron) was collected as a sample, and that of using syngas as an electron donor was collected as a control.
Project description:Microbiologically influenced corrosion (MIC) is recognized as a considerable threat to carbon steel asset integrity in the oil and gas industry. There is an immediate need for reliable and broadly applicable methods for detection and monitoring of MIC. Proteins associated with microbial metabolisms involved in MIC could serve as useful biomarkers for MIC diagnosis and monitoring. A proteomic study was conducted using a lithotrophically-grown bacteria Desulfovibrio ferrophilus strain IS5, which is known to cause severe electric MIC in seawater environments. Unique proteins, which are differentially and uniquely expressed during severe microbial corrosion by strain IS5, were identified. This includes the detection of a multi-heme cytochrome protein predicted to be involved in extracellular electron transfer in the presence of the carbon steel. Thus, we conclude that newly identified protein biomarker for MIC could be used to generate easy-to-implement immunoassays for reliable detection of microbiological corrosion in the field.
2021-07-30 | PXD026513 | Pride
Project description:Isolation of Crude oil Degrading Bacteria
Project description:The effect of nitrate reduction (anaerobic cultivation in the presence of heme, vitamin K2 and nitrate) was compared with anaerobic cultivation supplemented with citrate (Lactobacillus plantarum). The medium was chemically defined medium with mannitol as main carbon source Two-condition experiment, nitrate vs citrate reducing cells. Biological replicates: 4 nitrate reducing cultures, 4 citrate reducing cultures, independently grown and harvested. Two slides were used, each slide contained 8 Arrays. Citrate reducing cultures are called reactor 1-4, Nitrate reducing cultures are called reactor A-D