Project description:Methanogenic and methanotrophic archaea produce and consume the greenhouse gas methane, respectively, using the reversible enzyme methyl-coenzyme M reductase (Mcr). Recently, Mcr variants that can activate multi-carbon alkanes have been recovered from archaeal cultures. These enzymes, called alkyl-coenzyme M reductase (Acrs), are widespread in the environment but remain poorly understood. Here, we produced anoxic cultures degrading mid-chain petroleum n-alkanes from pentane (C5) to tetradecane (C14) at 70°C using oil-rich Guaymas Basin sediments. In these cultures, archaea of the genus Candidatus Alkanophaga activate the alkanes with Acrs and completely oxidize the alkyl groups to CO2. Ca. Alkanophaga form a deep-branching sister clade to the methanotrophs ANME-1 and are closely related to the short-chain alkane oxidizers Ca. Syntrophoarchaeum. Incapable of sulfate reduction, Ca. Alkanophaga shuttle electrons from alkane oxidation to the sulfate-reducing Ca. Thermodesulfobacterium syntrophicum. These syntrophic consortia are potential key players in petroleum degradation in heated oil reservoirs.
Project description:16S rRNA genes of Bacteria in fermentative enrichment isolated from heavy oil reservoir
| PRJNA454816 | ENA
Project description:16S rRNA amplicon reads of sulfamethoxazole-transforming nitrate-reducing and sulfate-reducing microbial enrichments with different electron donor treatments.
Project description:The effect of nitrate reduction (anaerobic cultivation in the presence of heme, vitamin K2 and nitrate) was compared with anaerobic cultivation supplemented with citrate (Lactobacillus plantarum). The medium was chemically defined medium with mannitol as main carbon source Two-condition experiment, nitrate vs citrate reducing cells. Biological replicates: 4 nitrate reducing cultures, 4 citrate reducing cultures, independently grown and harvested. Two slides were used, each slide contained 8 Arrays. Citrate reducing cultures are called reactor 1-4, Nitrate reducing cultures are called reactor A-D