Project description:The douple mutant Arabidopsis thaliana soc1 ful, in contrast with WT, produces an interfascicular cambium and a large wood cylinder is the flowering stem. We present the RNAseq data for polyA mRNA of different developmental stages of cambium and wood formation in Arabidopsis thaliana. We sequenced 7 stages; 4 in the woody mutant soc1-6 ful-7 (herbaceous, cambium initiation, wood initiation and leaf) and 3 stages in the WT Col-0 (herbaceous, cambium and leaf). The corresponding stem anatomy is also presented in the manuscript indicating the stage of cambium development and the production of secondary xylem.
Project description:To identify genes of the guard cell transcriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity.
Project description:Plants grow continuously and undergo numerous changes in their vegetative morphology and physiology during their life span. The molecular basis of these changes is largely unknown. To provide a more comprehensive picture of shoot development in Arabidopsis, microarray analysis was used to profile the mRNA content of shoot apices of different ages, as well as leaf primordia and fully-expanded leaves from 6 different positions on the shoot, in early-flowering and late-flowering genotypes. This extensive dataset provides a new and unexpectedly complex picture of shoot development in Arabidopsis. At any given time, the pattern of gene expression is different in every leaf on the shoot, and reflects the activity at least 6 developmental programs. Three of these are specific to individual leaves (leaf maturation, leaf aging, leaf senescence), two occur at the level of the shoot apex (vegetative phase change, floral induction), and one involves the entire shoot (shoot aging). Our results demonstrate that vegetative development is a much more dynamic process that previously imagined, and provide new insights into the underlying mechanism of this process.
Project description:To identify genes of the guard cell transkriptome of Arabidopsis thaliana enriched guard cell samples were compared with total leaf tissue. Genes of the abscisic acid and humidity response of Arabidopsis thaliana guard cells were identified by treatment with ABA-Spray and low humidity. Ost1-2 and slac1-3 mutants were compared to their wildtype.
Project description:Using nanoproteomics,we profiled the dynamics of proteome and found potentially important proteins in Arabidopsis thaliana early embryogenesis. Combining with RNAs-seq, we unveiled the relationship of protein and mRNA during Arabidopsis embryogenesis.