Project description:Premetamorphic Xenopus laevis tadpole tail respond to thyroid hormone by resorption. The goal of this experiment is to identify the genes involved in the TH-induced resorption tadpole tail and compare it to TH-induced proliferation and differentiation program in tadpole limb and brain. Xenopus tadpoles (NF54) were treated with 100 nM T3(triioodthyronine) in 0.1 x MMR for another 24h and 48h or without T3 for 48h (control group). NF 61 tadpoles were in 0.1 X MMR till they reached NF stage 62. The tails were dissected after the experiment.
Project description:Premetamorphic Xenopus laevis tadpole tail respond to thyroid hormone by resorption. The goal of this experiment is to identify the genes involved in the TH-induced resorption tadpole tail and compare it to TH-induced proliferation and differentiation program in tadpole limb and brain. Xenopus tadpoles (NF54) were treated with 100 nM T3 in 0.1 x MMR for another 24h and 48h or without T3 for 48h (control group). NF 61 tadpoles were in 0.1 X MMR till they reached NF stage 62. The tails were dissected after the experiment. Keywords: development or differentiation design,organism part comparison design,reference design,replicate design,time series design
Project description:Xenopus laevis tadpoles differ in their regenerative potential according to their developmental stage. Here, we focus on tail regeneration following amputation. By comparing the regenerative response during the naturally occurring regeneration-competent and -incompetent stages, scRNAseq can reveal cell type changes that are required for successful regeneration.
Project description:Epimorphic regeneration is the process by which complete regeneration of a complex structure such as a limb occurs through production of a proliferating blastema. This type of regeneration is rare among vertebrates but does occur in the African clawed frog Xenopus laevis, traditionally a model organism for the study of early development. Xenopus tadpoles can regenerate tails, limb buds and the lens of the eye, although the ability of the latter two organs to regenerate diminishes with advancing developmental stage. Using a heat shock inducible transgene that remains silent unless activated, we have established a stable line of transgenic Xenopus in which the BMP inhibitor Noggin can be over-expressed at any time during development. We have previously shown that activation of this transgene blocks regeneration of the tail and limb of Xenopus tadpoles. In the current study, we have taken advantage of this transgenic line to directly compare gene expression in same stage regenerating vs. non-regenerating hind limb buds. Using Affymetrix gene chip analysis, we have identified genes whose expression levels are linked to regenerative success. These include the BMP inhibitor Gremlin and the stress protein Hsp60 (no blastema in zebrafish). Analysis of overrepresented Gene Ontology functional groupings suggests that successful regeneration in the Xenopus hind limb depends on induction of stress response pathways. Furthermore, as expected, genes involved in embryonic development and growth are also significantly over-represented in regenerating early hind limb buds. Keywords: Differential expression, regeneration
Project description:In this experiment, we revealed the critical steps for regeneration initiation. We discovered Regeneration Initiating Cells (RICs) using single cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells and are critical for the modification of the surrounding extracellular matrix to allow for migration of other cell types that promote regeneration. Absence or deregulation of RICs leads to excessive extracellular matrix deposition and regeneration defects.
Project description:In this experiment, we revealed the critical steps for regeneration initiation. We discovered Regeneration Initiating Cells (RICs) using single cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells and are critical for the modification of the surrounding extracellular matrix to allow for migration of other cell types that promote regeneration. Absence or deregulation of RICs leads to excessive extracellular matrix deposition and regeneration defects.
Project description:In this experiment, we revealed the critical steps for regeneration initiation. We discovered Regeneration Initiating Cells (RICs) using single cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells and are critical for the modification of the surrounding extracellular matrix to allow for migration of other cell types that promote regeneration. Absence or deregulation of RICs leads to excessive extracellular matrix deposition and regeneration defects.
Project description:In this experiment, we revealed the critical steps for regeneration initiation. We discovered Regeneration Initiating Cells (RICs) using single cell and spatial transcriptomics of the regenerating Xenopus laevis tail. RICs are formed transiently from the basal epidermal cells and are critical for the modification of the surrounding extracellular matrix to allow for migration of other cell types that promote regeneration. Absence or deregulation of RICs leads to excessive extracellular matrix deposition and regeneration defects.