Project description:A highly contiguous mitochondrial and plastid genome sequences of a japonica rice cultivar, Taichung 65, were determined by a hybrid approach with long- and short-read sequences. The assembled mitochondrial genome was 465,453 bases in length with an overall GC content of 43.8%. It was predicted to harbor 62 protein-encoding genes, 16 kinds (33 copies) of transfer RNA, and three kinds (six copies) of ribosomal RNA genes. The mitochondrial genome structure in Taichung 65 is largely the same as that of Nipponbare, but the first ∼9.5 kb sequence in Nipponbare (DQ167400) is replaced with a ∼27 kb sequence duplicated from other parts of the mitochondrial genome. Phylogenetic and sequence polymorphism analysis indicated that Taichung 65 is classified as typical japonica. The assembled plastid genome sequence was 134,551 bases in length and completely identical to the previously reported Nipponbare sequence. These near-complete organelle genome sequences will serve as fundamental resources for investigating alloplasmic cytoplasmic male sterile lines and other organelle-controlled phenomena in rice.
Project description:Phosphate starvation/sufficient rice seedling, root or shoot Pi-starvation or Pi-sufficient stresses responsible rice genes, including previously unannotated genes were identified by Illumina mRNA-seq technology. 53 million reads from Pi-starvation or Pi-sufficient root or shoot tissues were uniquely mapped to the rice genome, and these included 40574 RAP3 transcripts in root and 39748 RAP3 transcripts in shoot. We compared our mRNA-seq expression data with that from Rice 44K oligomicroarray, and about 95.5% (root) and 95.4% (shoot) transcripts supported by the array were confirmed expression both by the array and by mRNA-seq, Moreover, 11888 (root) and 11098 (shoot) RAP genes which were not supported by array, were evidenced expression with mRNA-seq. Furthermore, we discovered 8590 (root) and 8193 (shoot) previously unannotated transcripts upon Pi-starvation and/or Pi-sufficient.
Project description:In this study, we examined the transcriptome dynamics within the matured fully expanded rice leaf and used strand-specific RNA sequencing to generate a comprehensive transcriptome dataset for the mature rice leaf. The rice Nipponbare (Oryza sativa l. japonica) seedlings were grown in the greenhouse. About 20 days after planting, the fully opened 4th leaves was cut it into seven 3-cm segments, from bottom to tip and labeled as sections 1 to 7, respectively. The tissues were immediately frozen in liquid nitrogen for total RNA extraction. Two biological replicates were collected for each section. Note: All samples in SRA were assigned the same sample accession (SRS685294). This is incorrect as there are different samples, hence âSource Nameâ was replaced with new values. Comment[ENA_SAMPLE] contains the original SRA sample accessions.