Project description:Staphylococcus xylosus is used as starter culture for sausage fermentation for a long time but the molecular mechanisms for its adaptation in meat remained unknown. A global transcriptomic approach was carried out to determine these molecular mechanisms. S. xylosus modulated the expression of about 30% of the total genes during its growth and survival in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up regulated. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up expressed and thus concomitantly a lot of genes involved in amino acids synthesis were down regulated. Finally S. xylosus responded to salt added in the meat model by over expressing genes involved in transport and synthesis of osmoprotectants, Na+ and H+ extrusion and in production of energy through the F0F1-ATPase.
Project description:Staphylococcus xylosus is used as starter culture for sausage fermentation for a long time but the molecular mechanisms for its adaptation in meat remained unknown. A global transcriptomic approach was carried out to determine these molecular mechanisms. S. xylosus modulated the expression of about 30% of the total genes during its growth and survival in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up regulated. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up expressed and thus concomitantly a lot of genes involved in amino acids synthesis were down regulated. Finally S. xylosus responded to salt added in the meat model by over expressing genes involved in transport and synthesis of osmoprotectants, Na+ and H+ extrusion and in production of energy through the F0F1-ATPase. Microarray was used to evaluate modification in the transcriptome of S. xylosus C2a strain in the inoculum (Mx) or in meat (V). Three biological replicates were collected on separate days for samples and labelled following a dye-switch design; for each condition one labeling in Cy3 and one in Cy5.
Project description:We found that norgestimate effectively inhibits staphylococcal biofilm formation. We used microarrays to clarify gene expressions of S. aureus MR23 culture treated with norgestimate.
Project description:Specific strains of the apathogenic coagulase-negative species Staphylococcus carnosus are frequently used as meat starter cultures, as they contribute to color formation and the production of aroma compounds. Here, we report the complete genome sequence of S. carnosus LTH 3730, a strain isolated from a fermented fish product.
Project description:The present work comprises the study of wound pathogenic bacteria as part of a community. It considers the interactions of two different S. aureus isolates with B. thuringiensis and K. oxytoca; all of them isolated from the same chronic wound of a patient with epidermolysis bullosa. Particular focus has been given on the interactions of S. aureus with other microbes due to its high prevalence among chronic wounds. During cultivation, no species performed as dominant or inhibited the growth of one another. Mass spectrometry was used to explore the inherent relationships between the staphylococcal strains and the coexisting bacteria exproteomes. The analysis showed an important reduction in the amount of staphylococcal cytoplasmic proteins when co-cultured with K. oxytoca and B. thuringiensis, this decrement did not occur with klebsiella and bacillus proteins. Interestingly, K. oxytoca and B. thuringiensis seemed to have a more evident response towards the presence of S. aureus in the culture, while the opposite was not observed with the staphylococcal isolates. Genomic analysis revealed isolate t13595 hypermutable characteristics, placing the interactions between staphylococcal isolates in the context of a chronic wound. Overall, the nature of the exoproteome variations among cultures suggests that adaptive mechanisms differ in all strains.
Project description:Staphylococcus xylosus is one of the major starter cultures used for meat fermentation because of its crucial role in the reduction of nitrate to nitrite, which contributes to color and flavor development. Despite the long use of these additives, their impact on the physiology of S. xylosus has not yet been explored. We present the first in situ global gene expression profile of S. xylosus in meat supplemented with nitrate and nitrite. More than 600 genes of S. xylosus were differentially expressed at 24 or 72 hours of incubation. They represent more than 20% of the total genes and led us to suppose that addition of nitrate and nitrite to meat leads to a global change in gene expression. This profile revealed that S. xylosus is subject to nitrosative stress caused by reactive nitrogen species generated from nitrate and nitrite. To overcome this stress, S. xylosus has developed several oxidative stress resistance mechanisms, such as modulation of the expression of several genes involved in iron homeostasis and in antioxidant defense. Most of these genes belong to the Fur and PerR regulons respectively. S. xylosus has also counteracted this stress by developing DNA and protein repair. Furthermore, it has adapted its metabolic responseM-bM-^@M-^Tcarbon and nitrogen metabolism, energy production and cell wall biogenesisM-bM-^@M-^Tto the alterations produced by nitrosative stress. Microarray was used to evaluate modification in the transcriptome of S. xylosus C2a strain in the presence (N) or absence (V) of nitroso compounds. Three biological replicates collected on separate days for each meat matrix and labelled following a dye-switch design; for each condition one labeling in Cy3 and one in Cy5.
Project description:Characterization of a nitrite reductase-negative Staphylococcus carnosus Tn917 mutant led to the identification of the nir operon, which encodes NirBD, the dissimilatory NADH-dependent nitrite reductase; SirA, the putative oxidase and chelatase, and SirB, the uroporphyrinogen III methylase, both of which are necessary for biosynthesis of the siroheme prosthetic group; and NirR, which revealed no convincing similarity to proteins with known functions. We suggest that NirR is essential for nir promoter activity. In the absence of NirR, a weak promoter upstream of sirA seems to drive transcription of sirA, nirB, nirD, and sirB in the stationary-growth phase. In primer extension experiments one predominant and several weaker transcription start sites were identified in the nir promoter region. Northern blot analyses indicated that anaerobiosis and nitrite are induction factors of the nir operon: cells grown aerobically with nitrite revealed small amounts of full-length transcript whereas cells grown anaerobically with or without nitrite showed large amounts of full-length transcript. Although a transcript is detectable, no nitrite reduction occurs in cells grown aerobically with nitrite, indicating an additional oxygen-controlled step at the level of translation, enzyme folding, assembly, or insertion of prosthetic groups. The nitrite-reducing activity expressed during anaerobiosis is switched off reversibly when the oxygen tension increases, most likely due to competition for electrons with the aerobic respiratory chain. Another gene, nirC, is located upstream of the nir operon. nirC encodes a putative integral membrane-spanning protein of unknown function. A nirC mutant showed no distinct phenotype.