Project description:Here, we describe a spontaneous mouse mutant with a deletion in a predicted gene 2310061I04Rik (Rik) of unknown function located on chromosome 17. A 59 base pair long deletion occurred in the first intron of the Rik gene and disrupted its expression. Riknull mice were born healthy and appeared anatomically normal up to two weeks of age. After that, these mice showed inhibited growth, ataxic gait, and died shortly after postnatal day 24 (P24). Transcriptome analysis at P14 and P23 revealed significantly reduced expression of mitochondrial genes in Riknull brains compared to wild type controls including mt-Nd4, mt-Cytb, mt-Nd2, mt-Co1, mt-Atp6, and others. Similarly, genes specific for myelinating oligodendrocytes also showed reduced expression in P23 Riknull brains compared to controls. Histological examination of anterior thalamic nuclei demonstrated decreased myelination of anteroventral nuclei but not of anterodorsal nuclei in P23 Riknull mice. Myelination of the anterior commissure was also impaired and displayed extensive vacuolation. Consistently with these findings, immunohistochemistry showed reduced expression of Opalin, a glycoprotein expressed in differentiated oligodendrocytes. Taken together, these results suggest that RIK is important for oligodendrocyte maturation and myelination in the developing brain.
Project description:Here, we describe a spontaneous mouse mutant with a deletion in a predicted gene 2310061I04Rik (Rik) of unknown function located on chromosome 17. A 59 base pair long deletion occurred in the first intron of the Rik gene and disrupted its expression. Riknull mice were born healthy and appeared anatomically normal up to two weeks of age. After that, these mice showed inhibited growth, ataxic gait, and died shortly after postnatal day 24 (P24). Transcriptome analysis at P14 and P23 revealed significantly reduced expression of mitochondrial genes in Riknull brains compared to wild type controls including mt-Nd4, mt-Cytb, mt-Nd2, mt-Co1, mt-Atp6, and others. Similarly, genes specific for myelinating oligodendrocytes also showed reduced expression in P23 Riknull brains compared to controls. Histological examination of anterior thalamic nuclei demonstrated decreased myelination of anteroventral nuclei but not of anterodorsal nuclei in P23 Riknull mice. Myelination of the anterior commissure was also impaired and displayed extensive vacuolation. Consistently with these findings, immunohistochemistry showed reduced expression of Opalin, a glycoprotein expressed in differentiated oligodendrocytes. Taken together, these results suggest that RIK is important for oligodendrocyte maturation and myelination in the developing brain.
Project description:Here, we describe a spontaneous mouse mutant with a deletion in a predicted gene 2310061I04Rik (Rik) of unknown function located on chromosome 17. A 59 base pair long deletion occurred in the first intron of the Rik gene and disrupted its expression. Riknull mice were born healthy and appeared anatomically normal up to two weeks of age. After that, these mice showed inhibited growth, ataxic gait, and died shortly after postnatal day 24 (P24). Transcriptome analysis at P14 and P23 revealed significantly reduced expression of mitochondrial genes in Riknull brains compared to wild type controls including mt-Nd4, mt-Cytb, mt-Nd2, mt-Co1, mt-Atp6, and others. Similarly, genes specific for myelinating oligodendrocytes also showed reduced expression in P23 Riknull brains compared to controls. Histological examination of anterior thalamic nuclei demonstrated decreased myelination of anteroventral nuclei but not of anterodorsal nuclei in P23 Riknull mice. Myelination of the anterior commissure was also impaired and displayed extensive vacuolation. Consistently with these findings, immunohistochemistry showed reduced expression of Opalin, a glycoprotein expressed in differentiated oligodendrocytes. Taken together, these results suggest that RIK is important for oligodendrocyte maturation and myelination in the developing brain.
Project description:Premature Ovarian Insufficiency (POI) refers to the decline and stagnation of ovarian function in women before the age of 40.POI-associated EIF4ENIF1 mutations and the distribution of functional domains in the EIF4ENIF1 protein have been separately described. However, not all the clinically observed EIF4ENIF1 mutations in POI cases fall in clearly defined functional domains of the EIF4ENIF1 protein. Herein, we introduce T&T seq as a new evaluation tool to sensitively measure the translation regulation capacities of EIF4ENIF1 proteins with clinically discovered mutations. The sequencing results showed that POI-associated EIF4ENIF1 mutations impaired its translation repression function to different degrees.
2024-04-09 | GSE240761 | GEO
Project description:SPATA22 mutations causing NOA and POI
Project description:Premature ovarian insufficiency (POI) refers to the severe decline and failure of ovarian function in women before the age of 40, and current treatment methods have significant limitations. In order to screen miRNAs with good anti-apoptotic effect, we used high-throughput sequencing technology to study the differences in exosomal miRNA expression profiles from human follicular fluid between patients with POI and patients with normal ovarian reserve.
Project description:We conducted microarray experiments by comparing constitutive constructs with appropriate controls, followed by the identification of downstream targets of Pro35S:CO1 Four samples of mature leaf tissues were collected from four independent lines of 35S:CO1 and pBI101. RNA was extracted from tissues and hybridized on Affymetrix Genechip Poplar Genome Array.
Project description:To identify underlying mechanisms involved with metastasis formation in Wilms tumors (WTs), we performed comprehensive DNA methylation and gene expression analyses of matched normal kidney (NK), WT blastemal component, and metastatic tissues (MT) from patients treated under SIOP 2001 protocol. A linear Bayesian framework model identified 497 differentially methylated positions (DMPs) between groups that discriminated NK from WT, but MT samples were divided in two groups. Accordingly, methylation variance grouped NK and three MT samples tightly together and all WT with four MT samples that showed high variability. WT were hypomethylated compared to NK, and MT had a hypermethylated pattern compared to both groups. The methylation patterns were in agreement with methylases and demethylases expression. Methylation data pointed to the existence of two groups of metastases. While hierarchical clustering analysis based on the expression of all 2569 differentially expressed genes (DEGs) discriminated WT and MT from all NK samples, the hierarchical clustering based on the expression of 44 genes with a differentially methylated region (DMR) located in their promoter region revealed two groups: one containing all NKs and three MTs and one containing all WT and four MTs. Methylation changes might be controlling expression of genes associated with WT progression. The 44 genes are candidates to be further explored as a signature for metastasis formation in WT.
Project description:This study is to identify urinary exosome microRNAs (miRNAs) that are unique to premature ovarian insufficiency (POI) with and without Turner syndrome and to use them as diagnostic markers for POI patients. We examined the miRNAexpression profile in urine exosomes from POI patients with and without Turner syndrome.