Project description:This study is to identify urinary exosome microRNAs (miRNAs) that are unique to premature ovarian insufficiency (POI) with and without Turner syndrome and to use them as diagnostic markers for POI patients. We examined the miRNAexpression profile in urine exosomes from POI patients with and without Turner syndrome.
Project description:Premature Ovarian Insufficiency (POI) refers to the decline and stagnation of ovarian function in women before the age of 40.POI-associated EIF4ENIF1 mutations and the distribution of functional domains in the EIF4ENIF1 protein have been separately described. However, not all the clinically observed EIF4ENIF1 mutations in POI cases fall in clearly defined functional domains of the EIF4ENIF1 protein. Herein, we introduce T&T seq as a new evaluation tool to sensitively measure the translation regulation capacities of EIF4ENIF1 proteins with clinically discovered mutations. The sequencing results showed that POI-associated EIF4ENIF1 mutations impaired its translation repression function to different degrees.
2024-04-09 | GSE240761 | GEO
Project description:SPATA22 mutations causing NOA and POI
Project description:The aim of this study is to identify the expression profile of mRNA in granulosa cells of POI We performed gene expression profiling analysis using data obtained from RNA-seq of the GCs in 6 POI patients and 5 control patients.This study provides a better understanding of molecular mechanism of POI and identifies the possible biomarkers of POI.
Project description:Premature ovarian insufficiency (POI) is a disease featured by early menopause before 40 years of age, accompanied by an elevation of follicle-stimulating hormone (FSH). Though POI affects many aspects of women’s health, its major causes remain unknown. Many clinical studies have shown that POI patients are generally underweight, indicating a potential correlation between POI and metabolic disorders. To understand the pathogenesis of POI, we performed metabolomics analysis on serum and identified branch chain amino acid (BCAA) insufficiency related metabolic disorders in two independent cohorts from two clinics. A low BCAA diet phenotypically reproduced the metabolic, endocrine, ovarian, and reproductive changes of POI in young C57 B6 mice. A mechanism study revealed that the BCAA insufficiency induced POI is associated with abnormal activation of the ceramide-ROS axis and consequent impairment of ovarian granulosa cell function. Significantly, dietary supplement of BCAA prevented the development of ROS-induced POI in female mice. The results of this pathogenic study will lead to the development of specific therapies for POI.
Project description:Recurrent mutations in ASXL1 are found in various hematological malignancies and are associated with poor prognosis. In particular, ASXL1 mutations are frequently found in patients with hematological malignancies associated with myelodysplasia including myelodysplastic syndromes (MDS), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal truncating ASXL1 mutations (ASXL1-MT) inhibit myeloid differentiation and induce MDS-like disease in mice, displaying all the features of human MDS including multi-lineage myelodysplasia, pancytopenia and occasional progression to overt leukemia. Concerning the molecular mechanisms, ASXL1-MT derepressed expression of Hoxa9 and miR-125a through inhibiting PRC2-mediated methylation of H3K27. miR-125a targeted expression of a surface receptor Clec5a, which was found to supports for myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1 mutations while Clec5a expression was generally low in MDS patients. Thus, ASXL1-MT induced MDS-like disease in mice via derepression of Hoxa9 and miR-125a, and Clec5a downregulation. Our data provide evidence for a novel axis of MDS pathogenesis (ASXL1 mutations-upregulation of HoxA9 and miR-125a-downregulation of Clec5a) and implicate both ASXL1 mutants and miR-125a as therapeutic targets in MDS.
Project description:Recurrent mutations in ASXL1 are found in various hematological malignancies and are associated with poor prognosis. In particular, ASXL1 mutations are frequently found in patients with hematological malignancies associated with myelodysplasia including myelodysplastic syndromes (MDS), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal truncating ASXL1 mutations (ASXL1-MT) inhibit myeloid differentiation and induce MDS-like disease in mice, displaying all the features of human MDS including multi-lineage myelodysplasia, pancytopenia and occasional progression to overt leukemia. Concerning the molecular mechanisms, ASXL1-MT derepressed expression of Hoxa9 and miR-125a through inhibiting PRC2-mediated methylation of H3K27. miR-125a targeted expression of a surface receptor Clec5a, which was found to supports for myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1 mutations while Clec5a expression was generally low in MDS patients. Thus, ASXL1-MT induced MDS-like disease in mice via derepression of Hoxa9 and miR-125a, and Clec5a downregulation. Our data provide evidence for a novel axis of MDS pathogenesis (ASXL1 mutations-upregulation of HoxA9 and miR-125a-downregulation of Clec5a) and implicate both ASXL1 mutants and miR-125a as therapeutic targets in MDS.
Project description:Recurrent mutations in ASXL1 are found in various hematological malignancies and are associated with poor prognosis. In particular, ASXL1 mutations are frequently found in patients with hematological malignancies associated with myelodysplasia including myelodysplastic syndromes (MDS), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal truncating ASXL1 mutations (ASXL1-MT) inhibit myeloid differentiation and induce MDS-like disease in mice, displaying all the features of human MDS including multi-lineage myelodysplasia, pancytopenia and occasional progression to overt leukemia. Concerning the molecular mechanisms, ASXL1-MT derepressed expression of Hoxa9 and miR-125a through inhibiting PRC2-mediated methylation of H3K27. miR-125a targeted expression of a surface receptor Clec5a, which was found to supports for myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1 mutations while Clec5a expression was generally low in MDS patients. Thus, ASXL1-MT induced MDS-like disease in mice via derepression of Hoxa9 and miR-125a, and Clec5a downregulation. Our data provide evidence for a novel axis of MDS pathogenesis (ASXL1 mutations-upregulation of HoxA9 and miR-125a-downregulation of Clec5a) and implicate both ASXL1 mutants and miR-125a as therapeutic targets in MDS. BM cells derived from mock-transplanted mice and ASXL1-MT transplanted mice were incubated with biotinylated antibodies for CD3e, B220, and TER-119, followed by incubation with streptavidin Micro Beads (Miltenyi Biotec). The marker-negative fraction was separated with LS Columns (Miltenyi Biotec). Using the sorted-BM cells, we compared the expression proliles between 3 sorted-BM cells with mock and 3 sorted-BM cells with ASXL1-MT. Total RNA was extracted by Trizol reagent (Invitrogen) according to the manufacturer’s protocol. Double-stranded cDNA was synthesized from 5 μg of total RNA with oligo (dT)24 T7 primer, amplified with T7 RNA polymerase up to approximately 50 μg of cRNA, and hybridized to Affymetrix Mouse Expression array 430A, which contains 45000 probe sets for 39000 transcripts and variants from over 34000 well-characterized mouse genes (Affymetrix). After washing and staining, the arrays were scanned on the GeneChip system confocal scanner (Affymetrix). The intensity for each feature of the array was captured with Affymetrix Microarray Suite (MAS) Version 5.0 software. Gene set enrichment analysis was performed by using Gene Ontology gene sets from the Molecular Signatures Database (http://www.broad.mit.edu/gsea/msigdb/).
Project description:Recurrent mutations in ASXL1 are found in various hematological malignancies and are associated with poor prognosis. In particular, ASXL1 mutations are frequently found in patients with hematological malignancies associated with myelodysplasia including myelodysplastic syndromes (MDS), and chronic myelomonocytic leukemia. Although loss-of-function ASXL1 mutations promote myeloid transformation, a large subset of ASXL1 mutations is thought to result in stable truncation of ASXL1. Here we demonstrate that C-terminal truncating ASXL1 mutations (ASXL1-MT) inhibit myeloid differentiation and induce MDS-like disease in mice, displaying all the features of human MDS including multi-lineage myelodysplasia, pancytopenia and occasional progression to overt leukemia. Concerning the molecular mechanisms, ASXL1-MT derepressed expression of Hoxa9 and miR-125a through inhibiting PRC2-mediated methylation of H3K27. miR-125a targeted expression of a surface receptor Clec5a, which was found to supports for myeloid differentiation. In addition, HOXA9 expression was high in MDS patients with ASXL1 mutations while Clec5a expression was generally low in MDS patients. Thus, ASXL1-MT induced MDS-like disease in mice via derepression of Hoxa9 and miR-125a, and Clec5a downregulation. Our data provide evidence for a novel axis of MDS pathogenesis (ASXL1 mutations-upregulation of HoxA9 and miR-125a-downregulation of Clec5a) and implicate both ASXL1 mutants and miR-125a as therapeutic targets in MDS. Using 32Dcl3 cells transduced with pMYs-IG (mock) and pMYs-FLAG-ASXL1-MT-IG, we compared the expression profiles of 32Dcl3 cells with mock or ASXL1-MT under G-CSF stimulation at 4 time points, including 0hr (IL-3), 2hr, 6hr and 24hrs. Total RNA was extracted by Trizol reagent (Invitrogen) according to the manufacturer’s protocol. Double-stranded cDNA was synthesized from 5 μg of total RNA with oligo (dT)24 T7 primer, amplified with T7 RNA polymerase up to approximately 50 μg of cRNA, and hybridized to Affymetrix Mouse Expression array 430A, which contains 45000 probe sets for 39000 transcripts and variants from over 34000 well-characterized mouse genes (Affymetrix). After washing and staining, the arrays were scanned on the GeneChip system confocal scanner (Affymetrix). The intensity for each feature of the array was captured with Affymetrix Microarray Suite (MAS) Version 5.0 software. Gene set enrichment analysis was performed by using Gene Ontology gene sets from the Molecular Signatures Database (http://www.broad.mit.edu/gsea/msigdb/)