Project description:This SuperSeries is composed of the following subset Series: GSE29854: Daphnia magna exposed to narcotics and polar narcotics - aniline GSE29856: Daphnia magna exposed to narcotics and polar narcotics - 4-chloroaniline GSE29857: Daphnia magna exposed to narcotics and polar narcotics - 3,5-dichloroaniline GSE29858: Daphnia magna exposed to narcotics and polar narcotics - 2,3,4-trichloroaniline GSE29862: Daphnia magna exposed to narcotics and polar narcotics - ethanol GSE29864: Daphnia magna exposed to narcotics and polar narcotics - isopropanol GSE29867: Daphnia magna exposed to narcotics and polar narcotics - methanol Refer to individual Series
Project description:This study used an emerging analytical technology (cDNA microarrays) to assess the potential effects of PFC exposure on largemouth bass in TCMA lakes. Microarrays simultaneously measure the expression of thousands of genes in various tissues from organisms exposed to different environmental conditions. From this large data set, biomarkers (i.e., genes that are expressed in response to an exposure to known stressors) and bioindicators (e.g., suites of genes that correspond to changes in organism health) can be simultaneously measured to clarify the relationship between contaminant exposure and organism health. Based on current scientific literature, we hypothesized that gene expression patterns would be altered in fish exposed to PFCs (as compared with fish from reference lakes), and that the magnitude of these changes would correspond to the concentrations of PFCs present throughout TCMA lakes. Patterns of gene expression in largemouth bass observed across the TCMA lakes corresponded closely with PFC concentration. Concentrations of PFCs in largemouth bass varied significantly across the sampled lakes, where the lowest concentrations were found in Steiger and Upper Prior Lakes and the highest concentrations were found in Calhoun and Twin Lakes. Patterns of gene expression were most different (relative to controls) in fish with the highest PFC tissue concentrations, where fish from Twin and Calhoun Lakes were observed to have between 5437 and 5936 differentially expressed genes in liver and gonad tissues. Although gene expression patterns demonstrated a high degree of correlation with PFC concentrations, microarray data also suggest there are likely additional factors influencing gene expression patterns in largemouth bass in TCMA lakes.
Project description:Epigenetic variation has the potential to control environmentally dependent development and contribute to phenotypic responses to local environments. Environmental epigenetic studies of sexual organisms confirm the responsiveness of epigenetic variation, which should be even more important when genetic variation is lacking. A previous study of an asexual snail, Potamopyrgus antipodarum, demonstrated that different populations derived from a single clonal lineage differed in both shell phenotype and methylation signature when comparing lake versus river populations. Here, we examine methylation variation among lakes that differ in environmental disturbance and pollution histories. The differential DNA methylation regions (DMRs) identified among the different lake comparisons suggested a higher number of DMRs and variation between rural Lake 1 and one urban Lake 2 and between the two urban Lakes 2 and 3, but limited variation between the rural Lake 1 and urban Lake 3. DMR genomic characteristics and gene associations were investigated. Observations suggest there is no effect of geographic distance or any consistent pattern of DMRs between urban and rural lakes. Environmental factors may influence epigenetic response.
Project description:In this study we assess global biogeography and correlation patterns among three components of microbial life: bacteria, microeukaryotes, and T4-like myoviruses. In addition to environmental and biogeographical considerations, we have focused our study on samples from high-latitude pristine lakes from both poles, since these simple island-like ecosystems represent ideal ecological models to probe the relationships among microbial components and with the environment. Bacterial assemblages were dominated by members of the same groups found to dominate freshwater ecosystems elsewhere, and microeukaryotic assemblages were dominated by photosynthetic microalgae. Despite inter-lake variations in community composition, the overall percentages of OTUs shared among sites was remarkable, indicating that many microeukaryotic, bacterial, and viral OTUs are globally-distributed. We observed an intriguing negative correlation between bacterial and microeukaryotic diversity values. Notably, our analyses show significant global correlations between bacterial and microeukaryotic community structures, and between the phylogenetic compositions of bacterial and T4-like virus assemblages. Overall, environmental filtering emerged as the main factor driving community structures.
Project description:Increasing atmospheric CO2 concentrations are causing decreased pH over vast expanses of the ocean. This decreasing pH may alter biogeochemical cycling of carbon and nitrogen via the microbial process of nitrification, a key process that couples these cycles in the ocean, but which is often sensitive to acidic conditions. Recent reports indicate a decrease in oceanic nitrification rates under experimentally lowered pH. How composition and abundance of ammonia oxidizing bacteria (AOB) and archaea (AOA) assemblages respond to decreasing oceanic pH, however, is unknown. We sampled microbes from two different acidification experiments and used a combination of qPCR and functional gene microarrays for the ammonia monooxygenase gene (amoA) to assess how acidification alters the structure of ammonia oxidizer assemblages. We show that despite widely different experimental conditions, acidification consistently altered the community composition of AOB by increasing the relative abundance of taxa related to the Nitrosomonas ureae clade. In one experiment this increase was sufficient to cause an increase in the overall abundance of AOB. There were no systematic shifts in the community structure or abundance of AOA in either experiment. These different responses to acidification underscore the important role of microbial community structure in the resiliency of marine ecosystems. SUBMITTER_CITATION: Title: Acidification alters the composition of ammonia oxidizing microbial assemblages in marine mesocosms Journal: Marine Ecology Progress Series Issue: 492 Pages: 1-8 DOI: 10.3354/meps 10526 Authors: Jennifer L Bowen Patrick J Kearns Michael Holcomb Bess B Ward
Project description:Clinicians need additional metrics for predicting quality of human oocytes for IVF procedures. Human polar bodies reflect the oocyte transcript profile. Quantitation of polar body mRNAs could allow for both oocyte ranking and embryo preferences in IVF applications. The transcriptome of a polar body has never been reported, in any organism. Eight total samples. There are 2 biological replicates of the following four conditions: pooled oocytes and their sister polar bodies and a single oocyte and its sister polar body.
Project description:Clinicians need additional metrics for predicting quality of human oocytes for IVF procedures. Human polar bodies reflect the oocyte transcript profile. Quantitation of polar body mRNAs could allow for both oocyte ranking and embryo preferences in IVF applications. The transcriptome of a polar body has never been reported, in any organism.