Project description:Small intestinal innate lymphoid cells (ILCs) are known to regulate intestinal epithelial cell homeostasis and to help prevent pathogenic bacterial infections, by producing IL-22. However, other functions of these cells and the lineal relationship between ILCs and lymphoid or myeloid cells have not been clear. We performed a global gene expression analysis to examine which genes are highly expressed by small intestinal ILCs (Lin-c-Kit+Sca-1- cells) compared with non-ILCs (Lin-c-Kit-Sca-1- cells).
Project description:Retinoic-acid receptor-related orphan receptor-γt-positive (RORγt+) innate lymphoid cells (ILCs) produce interleukin (IL)-22 and IL-17, which are critical for protective immunity against enteric pathogens. The molecular mechanism underlying the development and survival of RORγt+ ILCs is not thoroughly understood. Here we show that Dedicator of cytokinesis 8 (DOCK8), a scaffolding protein involved in cytoskeletal rearrangement and cell migration, is essential for the protective immunity against Citrobacter rodentium. A comparative RNA sequencing-based analysis reveals an impaired induction of antimicrobial peptides in the colon of DOCK8-deficient mice, which correlates with high susceptibility to infection and a very low number of IL-22-producing RORγt+ ILCs in their GI tract. Furthermore, DOCK8-deficient RORγt+ ILCs are less responsive to IL-7 mediated signaling, more prone to apoptosis and produce less IL-22 due to a defect in IL-23-mediated STAT3 phosphorylation. Our studies reveal an unsuspected role of DOCK8 for the function, generation and survival of RORγt+ ILCs.
Project description:How group 3 innate lymphoid cells (ILC3) regulate mucosal protection in the presence of T cells remains poorly understood. Here, we examined ILC3 function in intestinal immunity using ILC3-deficient mice that maintain endogenous T cells, Th17 cells, and secondary lymphoid organs. ILC3 were dispensable for generation of Th17 and Th22 cell responses to commensal and pathogenic bacteria, and absence of ILC3 did not affect IL-22-production by CD4 T cells before or during infection. However, despite presence of IL-22-producing T cells, ILC3 and ILC3-derived IL-22 were required for maintaining homeostatic functions of the intestinal epithelium. T cell-sufficient, ILC3-deficient mice were capable of pathogen clearance and survived infection with low dose Citrobacter rodentium. However, ILC3 increased pathogen tolerance at early timepoints of infection by activating tissue-protective immune pathways. Consequently, ILC3 were indispensable for survival of high dose infection. Our results demonstrate a crucial context-dependent role for ILC3 in immune-sufficient animals and provide a blueprint for uncoupling of ILC3 and Th17 cell functions.
Project description:Type-2 innate lymphoid cells (ILC2s) promote anti-helminth responses and contribute to allergies. Though Bcl11b has been previously considered a T-lineage identity transcription factor (TF) that restrains the innate-cell genetic programs, we report here that Bcl11b is highly expressed in mature ILC2s and acts upstream of the key ILC2 TFs Gfi1, Gata-3, and of IL-33 receptor IL1rl1 (T1ST2). Additionally, Bcl11b-/- ILC2s de-repressed Rorγt, Ahr and IL-23 receptor, normally expressed in type-3 ILCs (ILC3s). Consequently, Bcl11b-/- ILC2s lost ILC2 functions and gained ILC3 functions, expanding in response to the protease allergen papain, however producing IL-17 and IL-22, and not IL-5 and IL-13, causing lung neutrophilia rather than eosinophilia, and diminished mucus production. Our results broaden Bcl11b's role from a T-cell only TF, and establishes that Bcl11b sustains mature ILC2 genetic and functional programs and lineage fidelity through positive regulation of essential ILC2 TFs and negative regulation of pivotal ILC3 TFs. RNA-seq analysis on sorted ILC2s from the mLNs of Bcl11bF/F Cre-ERT2 and wildtype mice at steady state following tamoxifen mediated deletion of Bcl11b
Project description:Retinoic-acid receptor-related orphan receptor-γt-positive (RORγt+) innate lymphoid cells (ILCs) produce interleukin (IL)-22 and IL-17, which are critical for protective immunity against enteric pathogens. The molecular mechanism underlying the development and survival of RORγt+ ILCs is not thoroughly understood. Here we show that Dedicator of cytokinesis 8 (DOCK8), a scaffolding protein involved in cytoskeletal rearrangement and cell migration, is essential for the protective immunity against Citrobacter rodentium. A comparative RNA sequencing-based analysis reveals an impaired induction of antimicrobial peptides in the colon of DOCK8-deficient mice, which correlates with high susceptibility to infection and a very low number of IL-22-producing RORγt+ ILCs in their GI tract. Furthermore, DOCK8-deficient RORγt+ ILCs are less responsive to IL-7 mediated signaling, more prone to apoptosis and produce less IL-22 due to a defect in IL-23-mediated STAT3 phosphorylation. Our studies reveal an unsuspected role of DOCK8 for the function, generation and survival of RORγt+ ILCs. Control and DOCK8 KO mice were infected with 2X109 CFU of Citrobacter rodentium and day 8 post infection mice were sacrificed and their colons were harvested (n=5) . Total RNA was purified from the infected colons with RNeasy mini kit (Qiagen). RNA sequencing was performed (pooled RNA sample from five mice in each group) at Genomic Core Facility Southwestern Medical Center, University of Texas.
Project description:RORγt+ innate lymphoid cells (ILC) are crucial players of innate immune responses and represent a major source of IL-22, which has an important role in mucosal homeostasis. The signals required by RORγt+ ILC to express IL-22 and other cytokines, including TNF, have only partially been elucidated. Here we show that RORγt+ ILC can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORγt+ ILC selectively activates a coordinated pro-inflammatory program, including TNF, while cytokine stimulation induces preferentially IL-22 expression. However, combined engagement of NKp44 and cytokine receptors results in a strong synergistic effect. These data support the concept that NKp44+ RORγt+ ILC can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus. Transcriptome analysis of CD56+CD127hi tonsil ILC, Ex vivo and after stimulation with aNKp44, IL-1/IL-7/IL-23 or aNKp44/IL-1/IL-7/IL-23 for 3.5h. RNA was extracted and pooled from 2 donors each, Amplified and labeled according to manufacturer´s instructions (GeneChipU133plus2® , Affymetrix). The analysis was performed in triplicates.
Project description:Type-2 innate lymphoid cells (ILC2s) promote anti-helminth responses and contribute to allergies. Though Bcl11b has been previously considered a T-lineage identity transcription factor (TF) that restrains the innate-cell genetic programs, we report here that Bcl11b is highly expressed in mature ILC2s and acts upstream of the key ILC2 TFs Gfi1, Gata-3, and of IL-33 receptor IL1rl1 (T1ST2). Additionally, Bcl11b-/- ILC2s de-repressed Rorγt, Ahr and IL-23 receptor, normally expressed in type-3 ILCs (ILC3s). Consequently, Bcl11b-/- ILC2s lost ILC2 functions and gained ILC3 functions, expanding in response to the protease allergen papain, however producing IL-17 and IL-22, and not IL-5 and IL-13, causing lung neutrophilia rather than eosinophilia, and diminished mucus production. Our results broaden Bcl11b's role from a T-cell only TF, and establishes that Bcl11b sustains mature ILC2 genetic and functional programs and lineage fidelity through positive regulation of essential ILC2 TFs and negative regulation of pivotal ILC3 TFs.
Project description:RORγt+ innate lymphoid cells (ILC) are crucial players of innate immune responses and represent a major source of IL-22, which has an important role in mucosal homeostasis. The signals required by RORγt+ ILC to express IL-22 and other cytokines, including TNF, have only partially been elucidated. Here we show that RORγt+ ILC can directly sense the environment by the engagement of the activating receptor NKp44. NKp44 triggering in RORγt+ ILC selectively activates a coordinated pro-inflammatory program, including TNF, while cytokine stimulation induces preferentially IL-22 expression. However, combined engagement of NKp44 and cytokine receptors results in a strong synergistic effect. These data support the concept that NKp44+ RORγt+ ILC can be activated without cytokines and are able to switch between IL-22 or TNF production, depending on the triggering stimulus.
Project description:Innate lymphoid cells (ILCs) are tissue-resident lymphocytes subdivided into ILC1s, ILC2s and ILC3s based on core regulatory programs and signature cytokines secreted. ILCs exhibit functional plasticity: for instance, human IL-22-producing ILC3s convert into IFN-γ-producing ILC1-like in vitro. Whether this conversion occurs in vivo is unclear. Using flow cytometry, mass cytometry and scRNAseq, here we found that ILC3s and ILC1s occupy opposite ends of a spectrum including discrete subsets in human tonsils. RNA velocity suggested strong directionality toward ILC1s for one ILC3-ILC1 intermediate cluster. Clonal analysis revealed graded ability of ILC3-ILC1 subsets to convert into ILC1-like cells. When examined in humanized mice, ILC3 acquisition of ILC1 features showed tissue-dependency. In chromatin studies, Aiolos emerged as a nuclear factor that cooperates with Tbet to repress evolutionarily conserved regulatory elements active in ILC3s. The human intestine also exhibited an ILC3–ILC1 transitional population. We conclude that conversion of ILC3s to ILC1-like occurs in vivo in human tissues, and that tissue factors and Aiolos are crucial for this process.