Project description:Plant growth promoting rhizobacteria (PGPR) of the genus Bacillus are successfully used as biofertilizers and biopesticides. They potentially can reduce the use of chemicals in agriculture as an ecologically safe alternative, but to optimize the application of PGPR, more profound knowledge on specific gene regulation and molecular mechanisms of interaction with plants is needed. Advance in sequencing technologies made it affordable to compare transcriptom profiles of relative organisms to check to which extend PGPR strains or closely related species differ in their strategies of plant colonization. This work aimed at analysis of gene regulation in a biotechnological strain Bacillus atrophaeus UCMB-5137 to compare it with the gene expression profile of a generally recognized PGPR strain B. amyloliquefaciens FZB42. It was found out that despite the close taxonomic relatedness, these two organisms developed ability to colonize plants independently and use different strategies of plant colonization. Root exudate has triggered in UCMB-5137 alteration in expression in many genes controlled by stress response transcription factors (TF) SigB and SigD, while SigF, SigH, SigW, CcpA and several other TFs regulated genes associated with quorum sensing and biofilm formation, and adjusted the carbohydrate metabolism. Counting to peculiarities of gene regulation in different PGPR strains will allow optimization of their practical application.
Project description:We report the banana transcriptome profile in response to two distinct growth-promoting rhizobacteria, Bacillus amyloliquefaciens and Pseudomonas fluorescens. The goal of our study is to identify plant genes differentially regulated by rhizobacteria-plant interaction along time. At the same time, we show that despite these two rhizobacteria regulate distinct sets of genes, the same functional categories has been over-represented, such as transcription factor activity, response to stress and metabolic processes.
Project description:Bacillus amyloliquefaciens FZB42 is a representative organism for Gram positive soil bacteria associated with plant roots and beneficial to plant growth. It is of immense importance to understand mechanisms of this class of bacteria adapting to rhizosphere. In this work employing differential RNA sequencing (RNA-seq) and Northern blot, we systematically identified transcription start sites of mRNAs as well as non-coding regulatory RNAs in FZB42. The genes regulated at different growth phases and located in polycistronic operons were also identified. A set of genes were re-annotated. In addition, a sRNA named Bas01 was identified to be involved in Bacillus sporulation and biofilm formation. The result we obtained provides valuable data for investigation of Bacillus gene expression and molecular details of rhizobacterial interaction with host plants. Examination of transcriptome profile of rhizobacterium B. amyloliquefaciens FZB42 grown under six conditions.
Project description:Root exudates play an important role in plant-microbe interaction. The transcriptional profilings of plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 in response to maize root exudates under static condition, were investigated by an Illumina RNA-seq for understanding the regulatory roles of the root exudates.
Project description:Bacillus amyloliquefaciens FZB42 is a representative organism for Gram positive soil bacteria associated with plant roots and beneficial to plant growth. It is of immense importance to understand mechanisms of this class of bacteria adapting to rhizosphere. In this work employing differential RNA sequencing (RNA-seq) and Northern blot, we systematically identified transcription start sites of mRNAs as well as non-coding regulatory RNAs in FZB42. The genes regulated at different growth phases and located in polycistronic operons were also identified. A set of genes were re-annotated. In addition, a sRNA named Bas01 was identified to be involved in Bacillus sporulation and biofilm formation. The result we obtained provides valuable data for investigation of Bacillus gene expression and molecular details of rhizobacterial interaction with host plants.
Project description:The aim of our study is to elucidate the gene expression changes in rice in response to colonization by a plant growth promoting rhizobacteria such as the Bacillus subtilis through microarray high throughput technology. In particular, the effect of B.subtilis on root exudation (secretion of phytochemicals through roots) will be analysed. For this rice plantlets were grown in hydroponics and treated with B.subtilis RR4 for 48 hrs. The root samples of the control and treated plants were then used for the microarray experiment. The data obtained through microarray revealed genes related to cell wall modification, phytohormone synthesis, defense response, root exudation, etc. to be differentially regulated in response to B.subtilis RR4. Real time PCR analysis of few chosen genes (OsMS, OsALMT, OsABC, OsSDH, etc) also confirmed the validity of the microarray data. The initial responses of a plant in response to colonization by the microbe will be changes in cell wall of the plant tissues and the secretion of phytochemicals to attract/repel the colonizing beneficial/pathogenic organism. From analysis of microarray data we found the cell wall related genes which aid in root colonization and the root exudate related genes (biosynthesis and transport) which play a role in providing nutrition for the bacterial growth to be differentially regulated significantly. Analysis of specific genes and their biosynthesis pathways indicated that rice plants responded positively to root colonization by B.subtilis RR4. Notable among the exudation related genes such as Malate synthase and ALMT were found to be upregulated which indicates the significant role played by organic acids particularly malate in recruiting the PGPR towards the plant roots. This recruitment will thereby facilitate plant growth. Subsequently, these genes can be engineered in crop plants to recruit beneficial bacteria which might further open new avenues for improved crop production.
Project description:Lysine acetylation is a major post-translational modification that plays an important regulatory role in almost every aspects in both eukaryotes and prokaryotes. Bacillus amyloliquefaciens, a Gram-positive bacterium, is very effective for the control of plant pathogens. Here, we conducted the first lysine acetylome in B. amyloliquefaciens through a combination of highly sensitive immune-affinity purification and high-resolution LC−MS/MS. Overall, we identified 3268 lysine acetylation sites in 1254 proteins. Acetylated proteins are associated with a variety of biological processes and a large fraction of these proteins are involved in metabolism. These data serves as an important resource for further elucidation of the physiological role of lysine acetylation in B. amyloliquefaciens.
Project description:Root exudates play an important role in plant-microbe interaction. The transcriptional profilings of plant growth-promoting rhizobacteria Bacillus amyloliquefaciens SQR9 in response to maize root exudates under static condition, were investigated by an Illumina RNA-seq for understanding the regulatory roles of the root exudates. 4 treatments, including 2 blank control (24 h and 48 h-post inoculation, named as 5 and 15, respectively), and 2 treatments with maize root exudates (24 h and 48 h-post inoculation, named as 7 and 17, respectively)
Project description:Bacillus amyloliquefaciens FZB42 is a well-studied Gram-positive plant growth-promoting rhizobacteria. In this work we aim to study the effect of the effect of sigD deletion on the transcriptome of FZB42. The transcritomes were compared by two-color microarray of the sigD- mutant and the wildtype of B. amyloliquefaciens FZB42 grown in 1C medium supplemented with soil extract (SE). This submission includes data from two independent experiments with three biological replicates. Here a biological replicate means the bacterial culture from one flask used for RNA preparation. The samples were collected by two performers. The experiments were varied in sample performer, the date of the experiment.