Project description:The aim is to investigate the impact of prostate and colorectal cancer on mitochondrial quantity and quality along with muscle mass and function and whether this can be modified through the use of a home-based short-term exercise training program.
The investigators aim to recruit participants awaiting curative surgery for colorectal and prostate cancer and to assess the variation in baseline mitochondrial activity between them.
Participants from both cancer types will then carry out a 4 week home exercise program, this will be randomly allocated to either resistance-based or high-intensity interval training based. Participants will then be re-assessed on the day of their planned surgical procedure to assess the changes effected by the training program.
The investigators hypothesize that there will be variation in mitochondrial activity linked to muscle mass across the two cancer types and that home-based exercise programs have the ability to improve mitochondrial activity along with muscle mass.
| 2352291 | ecrin-mdr-crc
Project description:Gut microbiome in Vespertilio murinus
Project description:Pioneering studies (PXD014844) have identified many interesting molecules in tick saliva by LC-MS/MS proteomics, but the protein databases used to assign mass spectra were based on short Illumina reads of the Amblyomma americanum transcriptome and may not have captured the diversity and complexity of longer transcripts. Here we apply long-read Pacific Bioscience technologies to complement the previously reported short-read Illumina transcriptome-based proteome in an effort to increase spectrum assignments. Our dataset reveals a small increase in assignable spectra to supplement the previously released short-read transcriptome-based proteome.
Project description:Pioneering studies (PXD014844) have identified many interesting molecules by LC-MS/MS proteomics, but the protein databases used to assign mass spectra were based on short Illumina reads of the Amblyomma americanum transcriptome and may not have captured the diversity and complexity of longer transcripts. Here we apply long-read Pacific Bioscience technologies to complement the previously reported short-read Illumina transcriptome-based proteome in an effort to increase spectrum assignments. Our dataset reveals a small increase in assignable spectra to supplement previously released short-read transcriptome-based proteome.
Project description:We present a draft genome assembly that includes 200 Gb of Illumina reads, 4 Gb of Moleculo synthetic long-reads and 108 Gb of Chicago libraries, with a final size matching the estimated genome size of 2.7 Gb, and a scaffold N50 of 4.8 Mb. We also present an alternative assembly including 27 Gb raw reads generated using the Pacific Biosciences platform. In addition, we sequenced the proteome of the same individual and RNA from three different tissue types from three other species of squid species (Onychoteuthis banksii, Dosidicus gigas, and Sthenoteuthis oualaniensis) to assist genome annotation. We annotated 33,406 protein coding genes supported by evidence and the genome completeness estimated by BUSCO reached 92%. Repetitive regions cover 49.17% of the genome.
Project description:The Yeonsan Ogye (Ogye) is the rare black chicken breed domesticated in Korean peninsula, which has been noted for entire black color upon its appearances including feather, skin, comb, eyes, shank, claws and internal organs. In this study, whole genome, transcriptome and epigenome sequencings of Ogye were performed using high-throughput NGS sequencing platforms. We have produced Illumina short-reads (Paired-End, Mate-Pair and FOSMID) and PacBio long-reads for whole genome sequencing (WGS), 1.4 billion reads for RNA-seq, and 123 million reads for RRBS (reduced representation bisulfite sequencing) data. Using WGS data, Ogye genome has been assembled, and coding/non-coding transcriptome maps were constructed on Ogye genome given largescale sequencing data. We have predicted 17,472 (3,550 newly annotated and 13,922 known) protein-coding transcripts, and 9,443 (6,689 novel and 2,754 known) long non-coding RNAs (lncRNAs).