Project description:Morphine causes microbial dysbiosis. In this study we focused on restoration of native microbiota in morphine treated mice and looked at the extent of restoration and immunological consequences of this restoration. Fecal transplant has been successfully used clinically, especially for treating C. difficile infection2528. With our expanding knowledge of the central role of microbiome in maintenance of host immune homeostasis17, fecal transplant is gaining importance as a therapy for indications resulting from microbial dysbiosis. There is a major difference between fecal transplant being used for the treatment of C. difficile infection and the conditions described in our studies. The former strategy is based on the argument that microbial dysbiosis caused by disproportionate overgrowth of a pathobiont can be out-competed by re-introducing the missing flora by way of a normal microbiome transplant. This strategy is independent of host factors and systemic effects on the microbial composition. Here, we show that microbial dysbiosis caused due to morphine can be reversed by transplantation of microbiota from the placebo-treated animals.
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:Addictive drugs including opioids activate signal transduction pathways that regulate gene expression in the brain. However, changes in CNS gene expression following morphine exposure are poorly understood. We studied the effect of short- and long-term morphine treatment on gene expression in the hypothalamus and pituitary using genome-wide DNA microarray and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses. In the hypothalamus, we found that short-term morphine administration up-regulated (at least 2-fold) 39 genes and down-regulated six genes. Long-term morphine administration up-regulated 35 genes and down-regulated 51 hypothalamic genes. In the pituitary, we found that short-term morphine administration up-regulated (at least 2-fold) 110 genes and down-regulated 29 genes. Long-term morphine administration up-regulated 85 genes and down-regulated 37 pituitary genes. Strikingly, microarray analysis uncovered several genes involved in food intake (neuropeptide Y, agouti-related protein, and cocaine and amphetamine-regulated transcript) whose expression was strongly altered by morphine exposure in either the hypothalamus or pituitary. Subsequent RT-PCR analysis confirmed similar gene regulation of noteworthy genes in these regions. Finally, we found functional correlation between morphine-induced alterations in food intake and regulations of genes involved in this process. Changes in genes related to food intake may uncover new pathways related to some of the physiological effects of opioids. Keywords: Comparative treatment versus placebo 8 samples analyzed: 4 from hypothalamus (2 biological replicates and 2 dye swaps) and 4 from pituitary (2 biological replicates and 2 dye swaps) 8 samples analyzed: 4 from hypothalamus short term treatment (2 biological replicates and 2 dye swaps) and 4 hypothalamus long term treatment (2 biological replicates and 2 dye swaps)
Project description:Addictive drugs including opioids activate signal transduction pathways that regulate gene expression in the brain. However, changes in CNS gene expression following morphine exposure are poorly understood. We studied the effect of short- and long-term morphine treatment on gene expression in the hypothalamus and pituitary using genome-wide DNA microarray and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses. In the hypothalamus, we found that short-term morphine administration up-regulated (at least 2-fold) 39 genes and down-regulated six genes. Long-term morphine administration up-regulated 35 genes and down-regulated 51 hypothalamic genes. In the pituitary, we found that short-term morphine administration up-regulated (at least 2-fold) 110 genes and down-regulated 29 genes. Long-term morphine administration up-regulated 85 genes and down-regulated 37 pituitary genes. Strikingly, microarray analysis uncovered several genes involved in food intake (neuropeptide Y, agouti-related protein, and cocaine and amphetamine-regulated transcript) whose expression was strongly altered by morphine exposure in either the hypothalamus or pituitary. Subsequent RT-PCR analysis confirmed similar gene regulation of noteworthy genes in these regions. Finally, we found functional correlation between morphine-induced alterations in food intake and regulations of genes involved in this process. Changes in genes related to food intake may uncover new pathways related to some of the physiological effects of opioids. Keywords: Comparative treatment versus placebo
Project description:Recent evidence has demonstrated that the gut microbiome has marked effects on neuronal function and behavior. Disturbances to microbial populations within the gut have been linked to myriad models of neuropsychiatric disorders. However, the role of the microbiome in substance use disorders remains understudied. Here we show that male mice with their gut microbiome depleted by nonabsorbable antibiotics (Abx) exhibit decreased formation of morphine conditioned place preference across a range of doses (2.5-15 mg/kg), have decreased locomotor sensitization to morphine, and demonstrate marked changes in gene expression within the nucleus accumbens (NAc) in response to high-dose morphine (20 mg/kg × 7 days). Replacement of short-chain fatty acid (SCFA) metabolites, which are reduced by microbiome knockdown, reversed the behavioral and transcriptional effects of microbiome depletion. This identifies SCFA as the crucial mediators of microbiome-brain communication responsible for the effects on morphine reward caused by microbiome knockdown. These studies add important new behavioral, molecular, and mechanistic insight to the role of gut-brain signaling in substance use disorders
Project description:Analyse of gene expression modification after chronic analgesic treatment. The hypothesis tested in the present study was that oxycodone and morphine induced gene expression modification. Results provide important information to understand the analgesic effects of oxycodone as compared to morphine in a neuropathic pain model Total RNA obtained from DRG of neuropathic or control animals after oxycodone or morphine treatment
Project description:Epigenetic changes are essential for normal development and ageing, but there is still limited understanding of how environmental factors can cause epigenetic changes that leads to health problems or diseases. Morphine is known to pass through the placental barrier and impact normal embryo development by affecting the neural tube, frontal cortex and spinal cord development, and, as a consequence, delaying nervous system development. In fact, in-utero morphine exposure has shown alterations in anxiety-like behaviours, analgesic tolerance, synaptic plasticity and the neuronal structure of offspring. However, how morphine leads to abnormal neurogenesis and other physiological consequences during embryo development is still unknown. Considering that DNA methylation is a key epigenetic factor crucial for embryo development, our aim is to elucidate the role of methylation in response to morphine. Chronic morphine treatment (24h, 10μM) induces a global hypomethylation in mESC. WGBSeq identifies 16,808 sensitive to morphine which are involved in embryo development, signalling pathways, metabolism and/or gene expression, suggesting that morphine might impact methylation levels at developmental genes. Integrative analyses between WGBSeq and RNASeq identified Tet1 as morphine-sensitive gene. Morphine increased the gene expression of Tet1, modifying the methylation levels at the promoter. On the other hand, RNASeq and qRT-PCR analyses revealed that Dnmt1 gene expression decreased after morphine treatment, without altering the methylation patter at its promoters. By MS/MS approaches confirms a decrease in DNA methylation after chronic morphine treatment, together with an increase in hydroxymethylation global levels in mESCs. In conclusion, morphine induces a global hypomethylation in mESC through different mechanisms that involves passive demethylation and a self-regulatory mechanism via active demethylation.