Project description:Morphine causes microbial dysbiosis. In this study we focused on restoration of native microbiota in morphine treated mice and looked at the extent of restoration and immunological consequences of this restoration. Fecal transplant has been successfully used clinically, especially for treating C. difficile infection2528. With our expanding knowledge of the central role of microbiome in maintenance of host immune homeostasis17, fecal transplant is gaining importance as a therapy for indications resulting from microbial dysbiosis. There is a major difference between fecal transplant being used for the treatment of C. difficile infection and the conditions described in our studies. The former strategy is based on the argument that microbial dysbiosis caused by disproportionate overgrowth of a pathobiont can be out-competed by re-introducing the missing flora by way of a normal microbiome transplant. This strategy is independent of host factors and systemic effects on the microbial composition. Here, we show that microbial dysbiosis caused due to morphine can be reversed by transplantation of microbiota from the placebo-treated animals.
Project description:Investigating alterations the intestinal microbiome in a diet induced obesity (DIO) rat model after fecal transplant from rats, which underwent Roux-Y-Gastric-Bypass surgery (RYGB). The microbiomes of the RYGB-donor rats, the DIO rats, and DIO rats after receiving the fecal transplant from the RYGB rats. As controls lean rats as well as lean, RYGB and DIO rats after antibiotics treatment were used.
Project description:In our model the newborns of asthmatic mother mice or of mothers exposed to air pollutant particles are born with a predisposition to asthma. Gut microbiome of these pups is altered, and the transplant of the pups’ microbiome (GMT) has conferred the asthma predisposition to naïve recipients. We hypothesized that bacteria alter metabolomic profile in the gut, which polarizes the dendritic cells (DC) in the recipient by affecting epigenetic regulation in these key decision-maker cells. Here we examined DNA methylation profiles in the recipient host’s DCs to test the prediction that GMT confers alterations in DNA methylation (not seen with sterilized GMT).
Project description:TransplantLines is designed as a single-center, prospective cohort study and biobank including all different types of solid organ transplant recipients as well as living organ donors. In the TransplantLines gut microbiome study the gut microbiome of solid organ transplant recipients is characterized and linked to clinical phenotypes. This batch contains the cross-sectional data from renal transplant recipients is.
Project description:TransplantLines is designed as a single-center, prospective cohort study and biobank including all different types of solid organ transplant recipients as well as living organ donors. In the TransplantLines gut microbiome study the gut microbiome of solid organ transplant recipients is characterized and linked to clinical phenotypes. This batch contains the cross-sectional data from liver transplant recipients and longitudinal data from renal and liver transplant recipients.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:Opioid use disorder (OUD) is a public health crisis currently being exacerbated by increases in use of fentanyl; therefore, the identification of novel biomarkers and treatment strategies is critical. Here, we define how manipulations of the gut microbiome drive fentanyl intake, fentanyl seeking, and alter proteomic plasticity in the nucleus accumbens. These findings establish clear relevance for gut-brain signaling in OUD, and lay foundations for further translational work in this space.