Project description:To generate an efficient defense against begomovirus, we modulated the activity of the immune defense receptor NIK (NSP-Interacting Kinase) in tomato plants; NIK is a virulence target of the begomovirus NSP during infection. Replacing threonine-474 with aspartate (T474D) within the kinase activation loop promoted the constitutive activation of NIK-mediated defenses. This activation resulted in the down-regulation of translation-related genes and the suppression of global translation in T474D-overexpressing tomato lines. We also found that T474D-induced defense-related transcripts were associated with polysomes and immune proteins, which accumulated to detectable levels in T474D leaves. Consistent with these findings, T474D transgenic lines were tolerant to the tomato-infecting begomoviruses ToYSV and ToSRV. We propose that NIK mediates an anti-viral response via translation suppression and immune system induction.
Project description:To generate an efficient defense against begomovirus, we modulated the activity of the immune defense receptor NIK (NSP-Interacting Kinase) in tomato plants; NIK is a virulence target of the begomovirus NSP during infection. Replacing threonine-474 with aspartate (T474D) within the kinase activation loop promoted the constitutive activation of NIK-mediated defenses. This activation resulted in the down-regulation of translation-related genes and the suppression of global translation in T474D-overexpressing tomato lines. We also found that T474D-induced defense-related transcripts were associated with polysomes and immune proteins, which accumulated to detectable levels in T474D leaves. Consistent with these findings, T474D transgenic lines were tolerant to the tomato-infecting begomoviruses ToYSV and ToSRV. We propose that NIK mediates an anti-viral response via translation suppression and immune system induction. Global variation on gene expression induced by NIK expression and virus infection using total RNA from mock-inoculated and ToYSV-infected tomato wild-type plants, mock-inoculated and infected 35S::NIK1-4 overexpressing lines and mock-inoculated and infected 35S::T474D overexpressing lines. File map_itag23.csv correlates the ITAG 2.3 cDNA ID with the 21 bp reads in file Profiles_with_differential_expressions.csv.
Project description:We analyzed the global defense responses in common tobacco against a begomovirus Tomato yellow leaf curl China virus, an invasive whitefly species Middle East-Asia Minor 1, and their co-infestation. The transcripts of defense related genes were both overlapping and divergent in response to virus and whitefly.
2017-09-01 | GSE29812 | GEO
Project description:Molecular Characterization of Begomovirus infecting tomato and cucurbits in North-Eastern region of Tamil Nadu
| PRJNA506600 | ENA
Project description:Begomovirus infecting cucurbits in the Baja California Peninsula
Project description:The gram- positive bacterial pathogen Clavibacter michiganensis subsp. michiganensis (Cmm) causes huge economic losses by infecting tomato plants worldwide. Cmm can be spread by contaminated seeds and transplants, penetrating the plant through natural openings or wounds and is transferred through the plant xylem. While in recent years significant progress has been made to elucidate plant responses to pathogenic gram-negative bacteria by gene expression studies, the molecular mechanisms that lead to disease symptoms caused by gram-positive bacteria like Cmm remain elusive. An indigenous virulent Cmm strain isolated from a farm crop of Pomodoro tomatoes in southern Greece was used for the infection of EKSTASIS F1 hybrid tomato seedlings. Here, we present the results of a deep RNA- sequencing (RNA-seq) analysis performed to characterize the dynamic expression profile of tomato genes upon Cmm infection.
Project description:Exploring molecular details of carbon utilization trade-offs in galactose-evolved yeast Adaptively evolved yeast mutants on galactose for around 400 generations showed diminished growth and carbon uptake rates on glucose. Genome-scale approaches were applied to characterize the molecular genetic basis of these trade-offs in carbon source utilization. Engineered mutants showing trade-offs in a specific carbon uptake rate between both carbons were used as controls. The transcriptional responses of the evolved mutants were almost identical during growth on both carbon sources. These carbon-independent conserved patterns were clearly observed in specific pathways and genes. Up-regulation of PGM2, a confirmed beneficial genetic change for improving galactose utilization was preserved on both carbons. In addition, HXK1, GLK1 and genes involved in reserve carbohydrate metabolism were up-regulated, while HXK2 was down-regulated. Genes that have a transcription factor binding site for Gis1p, Rph1p, Msn2/4p and Nrg1p were up-regulated. These results indicated changes in the metabolic pathways involved in metabolism of both carbons and in nutrient signaling pathway. The concentration profile of trehalose and glycogen supported these findings. Mutations in RAS2 and ERG5 genes were selected because of their beneficial and neutral effect on galactose utilization, respectively in our previous study. Site-directed mutants containing galactose-beneficial mutations in RAS2 only resulted in a significant decrease in glucose utilization. Integration of all these analyses clearly suggest an antagonistic pleiotropic trade-off in carbon source utilization caused by changes in regulatory region, and we hereby demonstrate how systems biology can be used to gain insight into evolutionary processes at the molecular level. Yeast galactose evolved mutants having improved galactose availability were grown on aerobic batch with glucose as carbon source