Project description:Clostridium difficile is a gram-positive, spore-forming enteric anaerobe which can infect humans and a wide variety of animal species. Recently, the incidence and severity of human C. difficile infection has markedly increased. In this study, we evaluated the genomic content of 73 C. difficile strains isolated from humans, horses, cattle, and pigs by comparative genomic hybridization with microarrays containing coding sequences from C. difficile strains 630 and QCD-32g58. The sequenced genome of C. difficile strain 630 was used as a reference to define a candidate core genome of C. difficile and to explore correlations between host origins and genetic diversity. Approximately 16% of the genes in strain 630 were highly conserved among all strains, representing the core complement of functional genes defining C. difficile. Absent or divergent genes in the tested strains were distributed across the entire C. difficile 630 genome and across all the predicted functional categories. Interestingly, certain genes were conserved among strains from a specific host species, but divergent in isolates with other host origins. This information provides insight into the genomic changes which might contribute to host adaptation. Due to a high degree of divergence among C. difficile strains, a core gene list from this study offers the first step toward the construction of diagnostic arrays for C. difficile.
Project description:Clostridium difficile is a gram-positive, spore-forming enteric anaerobe which can infect humans and a wide variety of animal species. Recently, the incidence and severity of human C. difficile infection has markedly increased. In this study, we evaluated the genomic content of 73 C. difficile strains isolated from humans, horses, cattle, and pigs by comparative genomic hybridization with microarrays containing coding sequences from C. difficile strains 630 and QCD-32g58. The sequenced genome of C. difficile strain 630 was used as a reference to define a candidate core genome of C. difficile and to explore correlations between host origins and genetic diversity. Approximately 16% of the genes in strain 630 were highly conserved among all strains, representing the core complement of functional genes defining C. difficile. Absent or divergent genes in the tested strains were distributed across the entire C. difficile 630 genome and across all the predicted functional categories. Interestingly, certain genes were conserved among strains from a specific host species, but divergent in isolates with other host origins. This information provides insight into the genomic changes which might contribute to host adaptation. Due to a high degree of divergence among C. difficile strains, a core gene list from this study offers the first step toward the construction of diagnostic arrays for C. difficile.investigated by determining changes in transcript profiles when aerobic steady-state cultures were depleted of air.
Project description:Clostridioides difficile BI/NAP1/ribotype 027 is an epidemic hypervirulent strain found worldwide, including in Latin America. We examined the genomes and exoproteomes of two multilocus sequence type (MLST) clade 2 C. difficile strains considered hypervirulent: ICC-45 (ribotype SLO231/UK[CE]821), isolated in Brazil, and NAP1/027/ST01 (LIBA5756), isolated during a 2010 outbreak in Costa Rica. C. difficile isolates were cultured and extracellular proteins were analyzed using high-performance liquid chromatography-tandem mass spectrometry. Genomic analysis revealed that these isolates shared most of the gene composition. Only 83 and 290 NAP1/027 genes were considered singletons in ICC-45 and NAP1/027, respectively. Exoproteome analysis revealed 197 proteins, of which 192 were similar in both strains. Only five proteins were exclusive to the ICC-45 strain. These proteins were involved with catalytic and binding functions and indirectly interacted with proteins related to pathogenicity. Most proteins, including TcdA, TcdB, flagellin subunit, and cell surface protein, were overrepresented in the ICC-45 strain; 14 proteins, including mature S-layer protein, were present in higher proportions in LIBA5756. These data show close similarity between the genome and proteins in the supernatant of two strains with hypervirulent features isolated in Latin America and underscore the importance of epidemiological surveillance of the transmission and emergence of new strains.
Project description:Clostridium difficile (C. difficile) strains belonging to PCR ribotype 027, PFGE type NAP1, REA type B1 and toxinotype III, termed NAP1/027, have been implicated in the increased frequency of outbreaks of Clostridium difficile-associated diarrhoea (CDAD) in North America and Europe. The NAP1/027 strains appears to be more virulent with an increased mortality and frequency of relapse. Current European C. difficile microarrays are designed to the first sequenced and annotated C. difficile complete genome - strain 630 (ribotype 12). A high density oligonucleotide microarray was designed to C. difficile 630 (CD630) sequence and extra probes corresponding to two PCR ribotypes O27 strains C. difficile R20291 and QCD-32g58 were also included. Comparative genomic hybridisation was used to identify markers of ribotype 027 strains and markers to identify CD630. Strains hybridised to the array included the most prevalent ribotypes found in the UK and Europe (106 and 001) as well as the emerging hypervirulent ribotype 078.
Project description:Clostridium difficile is a gram-positive, spore-forming enteric anaerobe which can infect humans and a wide variety of animal species. Recently, the incidence and severity of human C. difficile infection has markedly increased. In this study, we evaluated the genomic content of 73 C. difficile strains isolated from humans, horses, cattle, and pigs by comparative genomic hybridization with microarrays containing coding sequences from C. difficile strains 630 and QCD-32g58. The sequenced genome of C. difficile strain 630 was used as a reference to define a candidate core genome of C. difficile and to explore correlations between host origins and genetic diversity. Approximately 16% of the genes in strain 630 were highly conserved among all strains, representing the core complement of functional genes defining C. difficile. Absent or divergent genes in the tested strains were distributed across the entire C. difficile 630 genome and across all the predicted functional categories. Interestingly, certain genes were conserved among strains from a specific host species, but divergent in isolates with other host origins. This information provides insight into the genomic changes which might contribute to host adaptation. Due to a high degree of divergence among C. difficile strains, a core gene list from this study offers the first step toward the construction of diagnostic arrays for C. difficile.investigated by determining changes in transcript profiles when aerobic steady-state cultures were depleted of air. Dye-swap experiments with genomic DNA of tested and reference strains 8383cy3.gpr- Cy3 – test, Cy5 – reference 8384cy3.gpr- Cy3 – test, Cy5 – reference 8384cy5.gpr- Cy3 – reference, Cy5 – test 8385cy3.gpr- Cy3 – test, Cy5 – reference 8385cy5.gpr- Cy3 – reference, Cy5 – test 8386cy3.gpr- Cy3 – test, Cy5 – reference 8525cy3.gpr- Cy3 – test, Cy5 – reference 8525cy5.gpr- Cy3 – reference, Cy5 – test 8527cy5.gpr- Cy3 – reference, Cy5 – test 8529cy5.gpr- Cy3 – reference, Cy5 – test 8531cy3.gpr- Cy3 – test, Cy5 – reference 8531cy5.gpr- Cy3 – reference, Cy5 – test 8533cy3.gpr- Cy3 – test, Cy5 – reference 8533cy5.gpr- Cy3 – reference, Cy5 – test 8596cy3.gpr- Cy3 – test, Cy5 – reference 8596cy5.gpr- Cy3 – reference, Cy5 – test 8694cy3.gpr- Cy3 – test, Cy5 – reference 8694cy5.gpr- Cy3 – reference, Cy5 – test 2 GPR files per Sample record except for 4 Sample records (GSM480414, GSM480417, GSM480419, and GSM480420) which have 1 GPR file each 4 GPR file for those Sample records are lost
Project description:Purpose: to determine the differentially expressed genes in the phase-variable rough and smooth colony isolates of C. difficile Methods: C. difficile R20291 was grown on BHIS agar to obtain distinct colonies. Individual rough and smooth colonies were chosen for propagation on BHIS-agar for 24 hours as described in Garrett, et al., PLoS Biology, 2019. Growth was collected from n = 2 biological replicates. RNA was purified using TriSure and chloroform, beadbeating, and isopropanol/ethanol precipitation. Quality was verified with Bioanalyzer Assay. Samples were submitted to Genewiz for depletion of rRNA using the TruSeq RiboZero Gold Kit, library preparation, and single-end sequencing on the Illumina HiSeq 2500 platform. RNA sequencing analysis was done using CLC Genomic Workbench v20. Reads were mapped to C. difficile R20291 genome using the software's default menalties for mismatch, deletion, and insertion differences from the reference genome. Transcript reads were normalized as RPKM. Results: 88 genes were differentially expressed between bacteria from rough versus smooth colonies, with equal to or greater than a 2-fold change and p < 0.05 with FDR correction.
Project description:The Zika outbreak, spread by the Aedes aegypti mosquito, highlights the need to create high-quality assemblies of large genomes in a rapid and cost-effective fashion. Here, we combine Hi-C data with existing draft assemblies to generate chromosome-length scaffolds. We validate this method by assembling a human genome, de novo, from short reads alone (67X coverage, Sample GSM1551550). We then combine our method with draft sequences to create genome assemblies of the mosquito disease vectors Aedes aegypti and Culex quinquefasciatus, each consisting of three scaffolds corresponding to the three chromosomes in each species. These assemblies indicate that virtually all genomic rearrangements among these species occur within, rather than between, chromosome arms. The genome assembly procedure we describe is fast, inexpensive, accurate, and can be applied to many species.
Project description:We used RNA-seq to conduct a genome-wide transcriptomic analysis of the C. difficile strain R20291 carrying the newly introduced ϕCD38-2 prophage. A total of 39 bacterial genes were differentially expressed in the R20291 lysogen, 26 of them being downregulated. Several of the regulated genes encode transcriptional regulators and PTS subunits involved in glucose, fructose and glucitol/sorbitol uptake and metabolism. Also of note, the presence of ϕCD38-2 upregulated the expression of a group of regulatory genes located in phi-027, a resident prophage common to most ribotype 027 isolates. The most differentially expressed gene was the conserved phase-variable cell wall protein CwpV, which was upregulated by about 20-fold in the lysogen. This is the first study describing the global response of C. difficile to the presence of a newly introduced prophage.