Project description:This series includes 278 microarrays used to detect respiratory viruses in a set of nasopharyngeal lavage specimens from children with respiratory tract infections Objective: To assess the utility of a pan-viral DNA microarray platform (Virochip) in the detection of viruses associated with pediatric respiratory tract infections. Study Design: The Virochip was compared to conventional clinical direct fluorescent antibody (DFA) and PCR-based testing for the detection of respiratory viruses in 278 consecutive nasopharyngeal aspirate samples from 222 children. Results: The Virochip was superior in performance to DFA, showing a 19% increase in the detection of 7 respiratory viruses included in standard DFA panels, and was similar to virus-specific PCR (sensitivity 85-90%, specificity 99%, PPV 94-96%, NPV 97-98%) in the detection of respiratory syncytial virus, influenza A, and rhino-/enteroviruses. The Virochip also detected viruses not routinely tested for or missed by DFA and PCR, as well as double infections and infections in critically ill patients that DFA failed to detect. Conclusions: Given its favorable sensitivity and specificity profile and greatly expanded spectrum of detection, microarray-based viral testing holds promise for clinical diagnosis of pediatric respiratory tract infections. Keywords: viral detection The series includes 278 clinical specimens
Project description:Chickens are remarkably versatile animals that are used as model organisms for biomedical research. Here, we performed metabolomic analyses of the liver tissue and serum of poultry with different genetic backgrounds, providing detailed information for liver tissue and serum at the metabolite level. The metabolomic data obtained for poultry of different genetic backgrounds will be a valuable resource for further studies on this model organism.
Project description:This series includes 278 microarrays used to detect respiratory viruses in a set of nasopharyngeal lavage specimens from children with respiratory tract infections Objective: To assess the utility of a pan-viral DNA microarray platform (Virochip) in the detection of viruses associated with pediatric respiratory tract infections. Study Design: The Virochip was compared to conventional clinical direct fluorescent antibody (DFA) and PCR-based testing for the detection of respiratory viruses in 278 consecutive nasopharyngeal aspirate samples from 222 children. Results: The Virochip was superior in performance to DFA, showing a 19% increase in the detection of 7 respiratory viruses included in standard DFA panels, and was similar to virus-specific PCR (sensitivity 85-90%, specificity 99%, PPV 94-96%, NPV 97-98%) in the detection of respiratory syncytial virus, influenza A, and rhino-/enteroviruses. The Virochip also detected viruses not routinely tested for or missed by DFA and PCR, as well as double infections and infections in critically ill patients that DFA failed to detect. Conclusions: Given its favorable sensitivity and specificity profile and greatly expanded spectrum of detection, microarray-based viral testing holds promise for clinical diagnosis of pediatric respiratory tract infections. Keywords: viral detection
Project description:Salmonella being one of the major infectious diseases in poultry causes considerable economical losses in terms of mortality and morbidity especially in countries which lack effective vaccination programs. Salmonellosis is considered to be most important zoonotic disease which causes considerable foodborne illness that leads to enormous economic loses. To minimize such losses, enhancing disease resistance to different pathogens seems to be a promising strategy. The indigenous chicken, evolved through thousands of years of natural selection, are well adapted to the local climatic conditions with better resistance to diseases. In the present study we investigated liver and spleen transcriptome profile of indigenous (Kashmir faverolla) breed and commercial broiler poultry at day 5 post-inoculation with Salmonella typhimurium using RNA sequencing. The DEGs and pathways identified shall provide potential targets to enhance disease resistance in poultry through successful breeding programmes.
Project description:The non-typhoidal Salmonella enterica serotype Heidelberg is a major foodborne pathogen primarily transmitted to humans through contaminated poultry products. Current control measures emphasize novel approaches to mitigate Salmonella Heidelberg colonization in poultry and the contamination of poultry products, thereby reducing its transmission to humans. This study highlight that commensal E. coli 47-1826 can potentially be used to control of S. Heidelberg 18-9079 in poultry
Project description:To characterize the differentially expressed genes between pathogenic avian E. coli and human E. coli ATCC 25922, Abstract Escherichia coli (E. coli) is a harmless common bacterium of poultry intestine, but with a wide range of genomic flexibility, is also causative agent of many poultry diseases collectively called colibacillosis that is blamed for high economic loss in poultry sector worldwide. Numerous studies have been conducted to check the prevalence of pathogenic E. coli in poultry and poultry products, however limited data are available regarding their resistance and virulence associated genes expression profile. This study examined the pathogenomic content of poultry E. coli by antibiotic susceptibility, biofilm formation and adhesion, invasion and intracellular survivability assays in Caco-2 and Raw 264.7 cell lines along with the determination of median lethal dose in two-day old chickens. A clinical pathogenic multidrug resistant (MDR) isolate, E. coli 381, isolated from broilers was found to be highly virulent in cell culture and in chicken model. Transcriptome analysis has been skewed towards bacterial pathogens because of the prioritization of poultry diseases. Comparative gene expression profile of MDR E. coli 381 and the reference human strain E. coli ATCC 25922 was done using Illumina HiSeq2500 transcriptome and results were verified by RT-qPCR analyses. A number of resistant encoding genes including multidrug transporters, multidrug resistance proteins, porins and autotransporters were identified. We also noticed overexpression of very important virulent genes (fimA, fimC, fimH and fimI) encoding the type-1 fimbrial proteins, curli fimbriae genes , invasin genes, toxin-encoding genes and biofilm forming regulatory genes . In addition, many types of stress and metal homeostasis controlling genes were among up-regulated genes in E. coli 381 as compared to reference strain. GO and KEGG pathway analysis results revealed that genes controlling secondary metabolism, drug transport, adhesion and invasion proteins, and mobile genetic elements were over-expressed in E. coli 381. Several genes involved in cellular and metabolic processes such as carbohydrate metabolism were responsible for stress tolerance. Seminal description of the transcriptomic results and other unique features of E. coli 381 confirmed that it is highly virulent and MDR strain of poultry origin. This comparative study provides new avenues for further work on molecular mechanisms to prevent resistance development in bacteria and to ensure public health.