Project description:Diagnostic primer extension assay to serotype Streptococcus pneumoniae. Assay validation. Background: Monitoring of Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. To simplify S. pneumoniae serotyping, a novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Results: Autolysin (lytA), pneumolysin (ply) and eight genes located in the capsular operon (cps) were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system that transforms genetic typing data into capsular serotype identification. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. In addition, the assay was tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitidis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. The assay presented with no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. Conclusion: This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction.
Project description:The capsular serotype has long been associated with the virulence of Streptococcus pneumoniae. Here we present an in-depth study of phenotypic and genetic differences between serotype 3 and serogroup 11 S. pneumoniae clinical isolates from both the general and indigenous populations of Australia. Both serotypes/groups included clonally unrelated strains with differences in well-known polymorphic virulence genes, such as nanA and pspA, as demonstrated by multilocus sequence typing and Western blot analysis. Nonetheless, the serotype 3 strains were consistently and significantly more virulent in mice than the serogroup 11 strains. Despite extensive genomic analysis, noncapsular genes common to one serotype/group but not the other were not identified. Nevertheless, following the conversion of a serotype 11A isolate to serotype 3 and subsequent analysis in an intranasal infection model, it was evident that both capsular and noncapsular factors determine the virulence phenotype in mice. However, it appears that these noncapsular factors vary from strain to strain. Data is also available from http://bugs.sgul.ac.uk/E-BUGS-126
Project description:PcsB is a protein of unknown function that plays a critical role in cell division in Streptococcus pneumoniae and other ovococcus species of Streptococcus. We constructed isogenic sets of mutants expressing different amounts of PcsB in laboratory strain R6 and virulent serotype 2 strain D39 to evaluate its cellular roles. Insertion mutagenesis in parent and pcsB+ merodiploid strains indicated that pcsB is essential in serotype 2 S. pneumoniae. Quantitative Western blotting of wild-type and epitope-tagged PcsB showed that all PcsB was processed into cell-associated and secreted forms of the same molecular mass. These analyses showed that PcsB bound to cells is present in relatively low amounts of only ≈ 300 molecules per cell. Controlled expression and complementation experiments indicated that there was a causative relationship between the severity of defects in cell division and decreasing PcsB amount. These experiments also indicated that perturbations of expression of the upstream mreCD genes did not contribute to the cell division defects of pcsB mutants and that mreCD could readily be deleted in these strains. Unexpectedly, the defects in cell division and cell shape in pcsB mutants or other mutants defective in cell wall biosynthesis, such as dacA, were strongly influenced by capsule. Underexpression of PcsB did not result in changes in the amounts or composition of lactoyl-muropeptides, which were markedly different in the R6 and D39 strains, and there was no correlation between decreased PcsB amount and sensitivity to penicillin. Finally, microarray analyses indicated that underexpression of PcsB may generate a signal that increases expression of the VicRK regulon, which includes pcsB.
Project description:Diagnostic primer extension assay to serotype Streptococcus pneumoniae. Assay validation. Background: Monitoring of Streptococcus pneumoniae serotype epidemiology is essential since serotype replacement is a concern when introducing new polysaccharide-conjugate vaccines. To simplify S. pneumoniae serotyping, a novel PCR-based automated microarray assay was developed to assist in the tracking of the serotypes. Results: Autolysin (lytA), pneumolysin (ply) and eight genes located in the capsular operon (cps) were amplified using multiplex PCR. This step was followed by a tagged fluorescent primer extension step targeting serotype-specific polymorphisms. The tagged primers were then hybridized to a microarray. Results were exported to an expert system that transforms genetic typing data into capsular serotype identification. The assay was validated on 166 cultured S. pneumoniae samples from 63 different serotypes as determined by the Quellung method. In addition, the assay was tested on clinical specimens including 43 cerebrospinal fluid samples from patients with meningitidis and 59 nasopharyngeal aspirates from bacterial pneumonia patients. The assay presented with no cross-reactivity for 24 relevant bacterial species found in these types of samples. The limit of detection for serotyping and S. pneumoniae detection was 100 genome equivalent per reaction. Conclusion: This automated assay is amenable to clinical testing and does not require any culturing of the samples. The assay will be useful for the evaluation of serotype prevalence changes after new conjugate vaccines introduction. 166 quellung serotyped strains and two negative controls