Project description:This SuperSeries is composed of the following subset Series: GSE41194: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 1) GSE41196: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 2) GSE41197: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 3) GSE41198: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 4 stroma) GSE41227: Differentially Expressed Genes Regulating the Progression of Ductal Carcinoma In Situ to Invasive Breast Cancer (Group 4 Epithelial) Refer to individual Series
Project description:This study identifies progression in breast ductal carcinoma in situ (DCIS) as it progresses towards triple negative invasive breast cancer (TNBC).
Project description:This study identifies progression in breast ductal carcinoma in situ (DCIS) as it progresses towards triple negative invasive breast cancer (TNBC).
Project description:This study identifies progression in breast ductal carcinoma in situ (DCIS) as it progresses towards triple negative invasive breast cancer (TNBC). Bulk DNA arrayCGH was performed on the C3Tag genetically engineered mouse model that forms human breast-like DCIS and TNBC.
Project description:This is a matched-pair analysis of ductal carcinoma in situ (DCIS) and invasive component (IDC) of nine breast ductal carcinoma to identify novel molecular markers characterizing the transition from DCIS to IDC for a better understanding of its molecular biology.
Project description:cDNA aCGH study of pure DCIS (breast duct carcinoma in situ) without invasive tumor, DCIS associated with IDC (breast invasive duct carcinoma) and its IDC component 23 patients: 6 pure DCIS without invasive cancer and no history of invasive cancer, 17 DCIS associated with IDC. Out of the latter 1 tumor had only enough DCIS (#16) for aCGH and one - IDC (#23) Keywords: Comparative clinical study
Project description:Analysis of gene expression changes in tumour epithelium (DCIS and invasive breast cancer) and stroma both immediately surrounding the lesions and more distantly. Total RNA obtained from Formalin Fixed Paraffin Embedded archival material and the individual compartments (stroma and epithelium) compared independently across the samples. Sample abbreviation key: BC = breast cancer DCIS = ductal carcinoma in situ IDC = invasive ductal carcinoma RM = remote metastasis S = stroma NS = near stroma.
Project description:Ductal carcinoma in situ (DCIS) is the presence of abnormal cells inside a milk duct in the breast. DCIS is considered the earliest form of breast cancer. DCIS is noninvasive, meaning that it does not spread out of the milk duct and has a low risk of becoming invasive.
Project description:Experiment description to give context to the data set: Ductal carcinoma in situ (DCIS), the most common type of pre-invasive lesion of breast, is being detected with increasing frequency with the advent of mammographic screening. Surgery is the mainstay for the treatment of DCIS. Based on the clinic-pathological features of DCIS, this may be followed by radiotherapy and/or endocrine therapy. The qualitative assessment of histological grade, expression of single protein biomarkers and more recently, mRNA analysis (DCIS Score) have been used to make these decisions. However, these factors do not fully predict the likelihood of development of invasive breast cancer treated with breast-conserving surgery. A majority of women with ductal carcinoma in situ (DCIS) receive breast-conserving surgery (BCS) but then face a risk of development of invasive breast cancer. Using Human Clariom D Pico Assay, we aim to compare the transcriptome profiles of DCIS in relation to development of invasive breast cancer (INV-BC) versus Non-INV-BC cases. Experimental Methods Clariom D Pico Human Transcriptome Array were performed according to Applied Biosystems/Thermo Fisher Scientific’s instructions. Experimental protocols are summarized in detail in Supplementary Methods (Supplementary Data). Sample annotation We compared the relative gene expression in development of invasive breast cancer (INV-BC) versus Non-INV-BC cases in Singapore cohort-59 cases (discovery cohort) and Italian cohort-50 cases (validation cohort). Microplate Plate and Well IDs are also provided as Clariom D ID list per cohort. Author information Dr. Sunil Badve is the Principal Investigator. Raw Data Probe Cell Intensity (CELL) and .ARR files which contain the design information for this study are provided (Human Clariom D Pico Assay).
Project description:Ductal carcinoma in situ (DCIS) is a mammary lesion characterized by abnormal epithelial cells occurring in mammary ducts while still being confined to the luminal space. Not all DCIS becomes invasive, and no strategy currently exists in patients to stratify indolent DCIS from DCIS at risk of progression. The standard of care includes surgical resection and radiation therapy, which constitutes overtreatment for most women whose DCIS would not progress forward. Several studies of human DCIS and breast cancer suggest that TP53 mutations occur early in DCIS, suggesting a critical role for mutant TP53 in driving disease progression. Using a somatic mouse model of Trp53R245W induced breast cancer (equivalent to the TP53R248W hotspot mutation in humans), we identified DCIS lesions. Through exome-sequencing and low-pass whole genome sequencing, we identified genomic changes shared between DCIS and invasive tumors. This comparison nominated seven murine candidate genes, with eight human orthologs. We assessed the cooperativity of these genes with mutant TP53 in MCF-10A cells using acinar morphogenesis and migration assays. Overexpression of TMEM267 in cells with mutant TP53 caused a significant increase in the filled duct, DCIS-like phenotype. We nominate TMEM267 as a cooperating event with mutant TP53 in DCIS progression.