Project description:Large conjugative plasmids are important drivers of bacterial evolution and contribute significantly to the dissemination of antibiotic resistance. Although plasmid borne multidrug resistance is recognized as one of the main challenges in modern medicine, the adaptive forces shaping the evolution of these plasmids within pathogenic hosts are poorly understood. Here we study plasmid-host adaptations following transfer of a 73 kb conjugative multidrug resistance plasmid to naïve clinical isolates of Klebsiella pneumoniae and Escherichia coli. We use experimental evolution, mathematical modelling and population sequencing to show that the long-term persistence and molecular integrity of the plasmid is highly influenced by multiple factors within a 25 kb plasmid region constituting a host-dependent burden. In the E. coli hosts investigated here, improved plasmid stability readily evolves via IS26 mediated deletions of costly regions from the plasmid backbone, effectively expanding the host-range of the plasmid. Although these adaptations were also beneficial to plasmid persistence in a naïve K. pneumoniae host, they were never observed in this species, indicating that differential evolvability can limit opportunities of plasmid adaptation. While insertion sequences are well known to supply plasmids with adaptive traits, our findings suggest that they also play an important role in plasmid evolution by maintaining the plasticity necessary to alleviate plasmid-host constrains. Further, the observed evolutionary strategy consistently followed by all evolved E. coli lineages exposes a trade-off between horizontal and vertical transmission that may ultimately limit the dissemination potential of clinical multidrug resistance plasmids in these hosts.
Project description:Conjugative plasmids are the main vehicle for the horizontal spread of antimicrobial resistance (AMR). Although AMR plasmids provide advantages to their hosts under antibiotic pressure, they can also disrupt the cell’s regulatory network, impacting the fitness of their hosts. Despite the importance of plasmid-bacteria interactions on the evolution of AMR, the effects of plasmid carriage on host physiology has remained underexplored, and most studies have focused on model bacteria and plasmids that lack clinical relevance. Here, we analyzed the transcriptional response of 11 clinical enterobacterial strains (2 Escherichia coli, 1 Citrobacter freundii and 8 Klebsiella spp.) and the laboratory-adapted E. coli MG1655 to carriage of pOXA-48, one of the most widely spread carbapenem-resistance plasmids. Our analyses revealed that pOXA-48 produces variable responses on their hosts, but commonly affects processes related to metabolism, transport, response to stimulus, cellular organization and motility. More notably, the presence of pOXA-48 caused an increase in the expression of a small chromosomal operon of unknown function in Klebsiella spp. and C. freundii, which is not present in E. coli. Phylogenetic analysis suggested that this operon has been horizontally mobilized across different Proteobacteria species. We demonstrate that a pOXA-48-encoded LysR transcriptional regulator controls the expression of the operon in Klebsiella spp. and C. freundii. In summary, our results highlight a crosstalk between pOXA-48 and the chromosome of its natural hosts.
Project description:Plasmid maintenance costs to bacterial hosts is closely linked to the mechanisms that underlie plasmid fitness and how these costs are resolved. Herein, we performed multiple (63) serial passage to explore the compensatory mechanisms of co-evolution of multidrug-resistant IncHI2 plasmid pJXP9 and S. Typhimurium strain ATCC 14028 with or without antibiotic selection. pJXP9 could be maintained at for hundreds of generations even without drug exposure. Decreased lag times and higher competitive advantages were observed in end-point evolved strains bearing pJXP9 compared to ancestral strains. Genomic and transcriptomic analyses revealed that the fitness costs of pJXP9 in ATCC 14028 were derived from not only specific plasmid genes, particularly the multidrug-resistant region and conjugation transfer region I, but also the conflicts resulting from chromosomal gene interactions. Correspondingly, plasmid-borne deletions of these regions could compensate the fitness cost due to the presence of the plasmid. Furthermore, mutations and mRNA alterations in chromosomal genes involved in physiological functions were also adaptative. These functions included decreased flagellar motility, oxidative stress resistance and fumaric acid synthesis, and increased Cu resistance. Our findings suggest that plasmid maintenance through plasmid-bacteria co-evolution is a trade-off between increasing plasmid vertical transmission and impairing its horizontal transmission and bacterial physiological phenotypes.
Project description:<p>Gut environments harbour dense microbial ecosystems in which plasmids are widely distributed. Plasmids facilitate the exchange of genetic material among microorganisms while enabling the transfer of a diverse array of accessory functions. However, their precise impact on microbial community composition and function remains largely unexplored. Here we identify a prevalent bacterial toxin and a plasmid-encoded resistance mechanism that mediates the interaction between Lactobacilli and Enterococci. This plasmid is widespread across ecosystems, including the rumen and human gut microbiota. Biochemical characterization of the plasmid revealed a defence mechanism against reuterin, a toxin produced by various gut microbes, such as Limosilactobacillus reuteri. Using a targeted metabolomic approach, we find reuterin to be prevalent across rumen ecosystems with impacts on microbial community structure. Enterococcus strains carrying the protective plasmid were isolated and their interactions with L. reuteri, the toxin producer, were studied in vitro. Interestingly, we found that by conferring resistance against reuterin, the plasmid mediates metabolic exchange between the defending and the attacking microbial species, resulting in a beneficial relationship or mutualism. Hence, we reveal here an ecological role for a plasmid-coded defence system in mediating a beneficial interaction. </p>
Project description:Plasmids facilitate the vertical and horizontal spread of antimicrobial resistance genes between bacteria. The host range and adaptation of plasmids to new hosts determine their impact on the spread of resistance. In this work, we explore the mechanisms driving plasmid adaptation to novel hosts in experimental evolution. Using the small multicopy plasmid pB1000, usually found in Pasteurellaceae, we studied its adaptation to a host from a different bacterial family, Escherichia coli. We observed two different mechanisms of adaptation. One mechanism is single nucleotide polymorphisms (SNPs) in the origin of replication (oriV) of the plasmid, which increase the copy number in E. coli cells, elevating the stability, and resistance profile. The second mechanism consists of two insertion sequences (ISs), IS1 and IS10, which decrease the fitness cost of the plasmid by disrupting an uncharacterized gene on pB1000 that is harmful to E. coli. Both mechanisms increase the stability of pB1000 independently, but only their combination allows long-term maintenance. Crucially, we show that the mechanisms have a different impact on the host range of the plasmid. SNPs in oriV prevent the replication in the original host, resulting in a shift of the host range. In contrast, the introduction of ISs either shifts or expands the host range, depending on the IS. While IS1 leads to expansion, IS10 cannot be reintroduced into the original host. This study gives new insights into the relevance of ISs in plasmid-host adaptation to understand the success in spreading resistance. IMPORTANCE ColE1-like plasmids are small, mobilizable plasmids that can be found across at least four orders of Gammaproteobacteria and are strongly associated with antimicrobial resistance genes. Plasmid pB1000 carries the gene blaROB-1, conferring high-level resistance to penicillins and cefaclor. pB1000 has been described in various species of the family Pasteurellaceae, for example, in Haemophilus influenzae, which can cause diseases such as otitis media, meningitis, and pneumonia. To understand the resistance spread through horizontal transfer, it is essential to study the mechanisms of plasmid adaptation to novel hosts. In this work we identify that a gene from pB1000, which encodes a peptide that is toxic for E. coli, and the low plasmid copy number (PCN) of pB1000 in E. coli cells are essential targets in the described plasmid-host adaptation and therefore limit the spread of pB1000-encoded blaROB-1. Furthermore, we show how the interplay of two adaptation mechanisms leads to successful plasmid maintenance in a different bacterial family.
Project description:BackgroundIn recent years, the emergence of multidrug resistant hypervirulent K. pneumoniae (MDR hvKp) isolates poses severe therapeutic challenge to global public health. The present study used the complete genome sequence of two MDR hvKp isolates belonging to ST23 to characterize the phylogenetic background and plasmid diversity.MethodsTwo hvKp isolates from patients with bacteremia were sequenced using Ion Torrent PGM and Oxford Nanopore MinION platforms and assembled by hybrid genome assembly approach. Comparative genomics approaches were used to investigate the population structure, evolution, virulence, and antimicrobial resistance of MDR hvKp strains.ResultsThe study isolates exhibited typical features of hvKp phenotypes associated with ST23. The convergence of multidrug resistance and hypervirulence were attributed by the presence of multiple plasmids including a 216 kb virulence plasmid and MDR plasmids belonging to IncA/C2, IncFIB, IncX3, and ColKP3 groups. The insertion of catA1 gene into virulence plasmid was observed along with genetic factors such as aerobactin, salmochelin, and rmpA2 that confer hvKp's hypervirulent phenotype. The core genome single nucleotide polymorphism (SNP) phylogenetic analyses of the isolates showed the evolution of ST23 hvKp was predominantly driven by ICEKp acquisitions.ConclusionTo the best of our knowledge, this is the first report of MDR hvKp isolates of ST23 with insertion of catA1 gene into the virulence plasmid which presents the possibility of hotspot integration sites on the plasmids to aid acquisition of AMR genes. ST23 is no longer confined to susceptible strains of hvKp. Our findings emphasize the need for more studies on recombinant events, plasmid transmission dynamics and evolutionary process involving hvKp.
Project description:An incompatibility P-7 plasmid pCAR1 can be efficiently transferred among artificial microcosms in the presence of divalent cations Ca2+ and Mg2+. One on one mating assays between Pseudomonas strains with different plasmids showed that the promotion of transfer efficiency by divalent cations was also found in other plasmids including pB10 and NAH7, whereas the impacts were larger in IncP-7 plasmids. The impact on pCAR1 transfer altered by different pairs of donor and recipient strains, and the promotion of transfer efficiency was clearly detected between donors P. resinovorans CA10dm4 and P. fluorescens Pf0-1 to the recipients P. putida KT2440 and CA10dm4. Transcriptome analyses showed that genes on the pCAR1 did not respond to the presence of cations, including the tra/trh genes involved in its transfer. Notably, transcriptions of oprH genes, encoding a putative outer membrane proteins, in both of donor and recipient were commonly upregulated under the cation-limited condition. Transfer frequency of the pCAR1 to the transposon mutant of oprH in KT2440 was not promoted by the cations. This effect was partially recovered by the complementation with oprH gene, suggesting that OprH is involved in the promotion the pCAR1 transfer by divalent cations.