Project description:The skin commensal yeast Malassezia is associated with several skin disorders. To establish a reference resource, we sought to determine the complete genome sequence of Malassezia sympodialis and identify its protein-coding genes. A novel genome annotation workflow combining RNA sequencing, proteomics, and manual curation was developed to determine gene structures with high accuracy.
Project description:The association of genetic variation with disease and drug response, together with improvements in nucleic acids technologies, has given great optimism for the impact of 'genomic medicine'. However, the formidable size of the diploid human genome has prevented the routine application of sequencing methods to deciphering complete individual human genomes, and has so far limited the realization of the full potential of genomics for science and human health. Working towards the goal of harnessing the power of genomics, we sequenced the diploid genome of a single individual, Dr. James D. Watson, using a massively-parallel method of sequencing in picoliter size reaction vessels. Here we report the results of genotyping the subject's DNA using an Affymetrix 500k GeneChip as well as copy number variations as reported by Agilent 244k comparative genomic hybridization arrays. Keywords: Genotyping, copy number variation (CNV), aCGH
Project description:We demonstrate that comparative genomic hybridisation (CGH) onto cDNA microarrays may be used to carry out genome-wide screens for regions of genetic loss, including homozygous (complete) deletions that may represent the possible location of tumour suppressor genes in human cancer. Screening of the prostate cancer cell lines LNCaP, PC3 and DU145 allowed the mapping of specific regions where genome copy number appeared altered and led to the identification of two novel regions of complete loss at 17q21.31 (500 kb spanning STAT3) and at 10q23.1 (50-350 kb spanning SFTPA2) in the PC3 cell line. Keywords: Tumour vs normal comparison, array CGH