Project description:To combat dental implant-associated infections, there is a need for novel materials which effectively inhibit bacterial biofilm formation. In the present study, a titanium surface functionalization based on the “slippery liquid-infused porous surfaces” (SLIPS) principle was analyzed in an oral flow chamber system. The immobilized liquid layer was stable over 13 days of continuous flow. With increasing flow rates, the surface exhibited a significant reduction in attached biofilm of both the oral initial colonizer Streptococcus oralis and an oral multi-species biofilm composed of S. oralis, Actinomyces naeslundii, Veillonella dispar and Porphyromonas gingivalis. Using single cell force spectroscopy, reduced bacterial adhesion forces on the lubricant layer could be measured. Gene expression patterns in biofilms on SLIPS, on control surfaces and planktonic cultures were also compared. For this purpose, the genome of S. oralis strain ATCC® 9811TM was sequenced using PacBio Sequel technology. Even though biofilm cells showed clear changes in gene expression compared to planktonic cells, no differences could be detected between bacteria on SLIPS and on control surfaces. Therefore, it can be concluded that the ability of liquid-infused titanium to repel biofilms is solely due to weakened bacterial adhesion to the underlying liquid interface.
Project description:Investigation of whole genome gene expression level changes in S. pneumoniae KCTC 5080T, S. mitis KCTC 3556T, S. oralis KCTC 13048T, and S. pseudopneumoniae CCUG 49455T. This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains. A one chip study using total RNA recovered from S. pseudopneumoniae CCUG 49455T with three strain. For the the transcriptome of S. pseudopneumoniae CCUG 49455T was analyzed using the S. pneumoniae R6 microarray platform and compared with those of S. pneumoniae KCTC 5080T, S. mitis KCTC 3556T, and S. oralis KCTC 13048T strains.
Project description:Human gingival epithelial cells (HGEp) and fibroblasts (HGF) are the main cell types of the peri-implant soft-tissue, with HGEp constantly being exposed to bacteria and HGF residing protected in the connective tissue as long as an intact mucosa-implant seal is preserved. Streptococcus oralis belongs to the commensal bacteria, is highly abundant at healthy implant sites, and might exert host modulatory effects on soft-tissue cells as described for other streptococci. Thus, we aimed to investigate the effects of S. oralis biofilm on HGEp as well as HGF. HGEp or HGF were grown on titanium separately and responded to S. oralis biofilm challenge. The cell condition of HGF was dramatically impaired after 4 hours showing a transcriptional inflammatory and stress response. In contrast, S. oralis challenge induced only transcriptional inflammatory response in HGEp with their cell condition remaining unaffected. Subsequently, HGF were susceptible compared to HGEp. The proinflammatory IL-6 was attenuated in HGF and CXCL8 in HGEp indicating a general tissue-protective role of S. oralis, forasmuch as the HGF are not exposed. In conclusion, an intact implant-mucosa interface is a prerequisite so that commensal biofilms can promote homeostasis for tissue protection.
Project description:Investigation of whole genome gene expression level changes in S. pneumoniae KCTC 5080T, S. mitis KCTC 3556T, S. oralis KCTC 13048T, and S. pseudopneumoniae CCUG 49455T. This proves that transcriptional profiling can facilitate in elucidating the genetic distance between closely related strains.
Project description:In order to appreciate the presence of surface protein gene homologues in commensal species S. mitis and S. oralis, comparative genomic hybridization studies using DNA microarrays were performed with 8 S. mitis and 11 S. oralis from different geographic locations. The oligonucleotide microarray was designed based on the genomes of S. pneumoniae R6 and TIGR4 as well as S. mitis B6 to include genes of 63 cell surface proteins. The denatured genomic DNA of the S. mitis and S. oralis strains was labeled with Cy3-dCTP and control S. mitis B6 DNA was labeled with Cy5-dCTP. Hybridization was performed following the manufacturers recommendations using an hybridization temperature of 40C for 16 h. For data processing, microarrays were scanned on the laser scanner Pro Scan Array GX (PerkinElmer) with the low resolution of 50 M-5m using ScanArrayExpress Software version 4.0. Photomultiplier tube was adjusted to balance the two fluorescence channels and biochips were scanned with a resolution of 10 M-5m. After elimination of background values fluorescence intensity was determined. Signals that showed an intensity ratio of 0.3 and above were considered to be positive.
Project description:We compared the gene expression patterns of macrophages infected with S. oralis wild type and SpxB KO, a strain that does not produce H2O2.
Project description:We have presented FROG and miniFROG reports for the first genome-scale model, iCJ415, for Streptococcus oralis SK141. The model can be found in the Supplementary Material of the publication by Jensen et al, 2020 cited here.