Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
| 2533916 | ecrin-mdr-crc
Project description:Whole genome sequencing of Gnetum gnemon (Gnetum) to construct a draft genome assembly.
Project description:The Xenopus genus is well known for the high degree of polyploidy observed in its constituent species, but there is minimal information about transcriptional changes observed in these highly polyploid vertebrates. Xenopus andrei, an octoploid species within the Xenopus genus, presents a novel system for assessing a polyploid transcriptome during vertebrate development. RNA-Seq data was generated at nine different developmental stages ranging from unfertilized eggs through late tailbud stages. Additionally, using Trinity, RNA-seq data from all nine stages was pooled to create a draft de novo assembly of the transcriptome. This represents the first published assembly of an octoploid vertebrate transcriptome. This RNA-Seq and transcriptome data will be useful in comparing polyploid transcriptomes across Xenopus species, as well as understanding evolutionary implications of whole-genome duplication in vertebrates.