Project description:Predicting how climate change affects biotic interactions and their evolution poses a challenge. Plant-insect herbivore interactions are particularly sensitive to climate change, as climate-induced changes in plant quality cascade into the performance of insect herbivores. Whereas the immediate survival of herbivore individuals depends on plastic responses to climate change induced nutritional stress, long-term population persistence via evolutionary adaptation requires genetic variation for these responses. In order to assess the prospects for population persistence under climate change, it is therefore crucial to characterise response mechanisms to climate change induced stressors, and quantify their variability in natural populations. Here, we test developmental and transcriptomic responses to water limitation induced host plant quality change in a Glanville fritillary butterfly (Melitaea cinxia) metapopulation. We combine nuclear magnetic resonance spectroscopy on the plant metabolome, larval developmental assays and an RNA seq analysis of the larval transcriptome. We observed that responses to feeding on water limited plants, in which amino acids and aromatic compounds are enriched, showed marked intrapopulation variation, with individuals of some families performing better on control and others on water limited plants. The transcriptomic responses were concordant with the developmental responses: Families exhibiting opposite developmental responses also produced opposite transcriptomic responses, e.g. in growth associated intracellular signalling. The opposite developmental and transcriptomic responses are associated with between families differences in organic compound catabolism and storage protein production. The results reveal heritable intrapopulation variability in plasticity, suggesting potential for evolutionary responses to drought-induced changes in host plant quality in the Finnish M. cinxia metapopulation.
Project description:Increased root H+ secretion is known as a strategy of plant adaption to low phosphorus (P) stress by enhancing mobilization of sparingly soluble P-sources. However, it remains fragmentarywhether enhanced H+ exudation could reconstruct the plant rhizosphere microbial community under low P stress. The present study found that P deficiency led to enhanced H+ exudation from soybean (Glycine max) roots. Three out of all eleven soybean H+-pyrophosphatases (GmVP) geneswere up-regulated by Pi starvation in soybean roots. Among them, GmVP2 showed the highest expression level under low P conditions. Transient expression of a GmVP2-green fluorescent protein chimera in tobacco (Nicotiana tabacum) leaves, and functional characterization of GmVP2 in transgenic soybean hairy roots demonstrated that GmVP2 encoded a plasma membrane transporter that mediated H+ exudation. Meanwhile, GmVP2-overexpression in Arabidopsis thaliana resulted in enhanced root H+ exudation, promoted plant growth, and improved sparingly soluble Ca-P utilization. Overexpression of GmVP2 also changed the rhizospheric microbial community structures, as reflected by a preferential accumulation of acidobacteria in the rhizosphere soils. These results suggested that GmVP2 mediated Pi-starvation responsive H+ exudation,which is not only involved in plant growth and mobilization of sparingly soluble P-sources, but also affects microbial community structures in soils.
Project description:The presence of genetic groups of the entomopathogenic fungus Metarhizium anisopliae in soil is shaped by its adaptability to specific soil and habitat types, and by soil insect populations. Although the entomopathogenic life style of this fungus is well studied, its saprophytic life style has received little consideration. While a set of functionally related genes can be commonly expressed for the adaptability of this fungus to different environments (insect cuticle, insect blood and root exudates), a different subset of genes is also expected for each environment. In order to increase the knowledge of the potential use of M. anisopliae as a rhizosphere competent organism, in this study we evaluated the genetic expression of this fungus while growing on plant root exudates in laboratory conditions during a time course.
Project description:We compared gene expression in the foregut tissues of two rodent species: Stephen's woodrat (Neotoma stephensi), which harbors a dense foregut microbial community, and the lab rat (Rattus norvegicus), which lacks such a community. We found that woodrats have higher abundances of transcripts associated with smooth muscle processes, specifically a higher expression of the smoothelin-like 1 gene, which may assist in contractile properties of this tissue to retain food material in the foregut chamber. The expression of genes associated with keratinization and cornification exhibited a complex pattern of differences between the two species, suggesting distinct molecular mechanisms for this process in each of the two species. Lab rats exhibited higher abundances of transcripts associated with immune function, likely to inhibit microbial growth in the foregut of this species. Some of our results were consistent with previous findings in ruminants (high expression of facilitative glucose transporters, lower expression of B4galnt2), suggestive of possible convergent evolution, while other results were unclear, and perhaps represent novel host-microbe interactions in rodents. Overall, our results suggest that harboring a foregut microbiota is associated with changes to the functions and host-microbe interactions of the foregut tissues.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments.
Project description:Plants in their natural and agricultural environments are continuously exposed to a plethora of diverse microorganisms resulting in microbial colonization of plants in the rhizosphere. This process is believed to be accompanied by an intricate network of ongoing simultaneous interactions. In this study, we compared transcriptional patterns of Arabidopsis thaliana roots and shoots in the presence and absence of whole microbial communities extracted from compost soil. The results show a clear growth promoting effect of Arabidopsis shoots in the presence of soil microbes compared to axenically grown plants under identical conditions. Element analyses showed that iron uptake was facilitated by these mixed microbial communities which also lead to transcriptional downregulation of genes required for iron transport. In addition, soil microbial communities suppressed the expression of marker genes involved in oxidative stress/redox signalling, cell wall modification and plant defense. While most previous studies have focussed on individual plant-microbe interactions, our data suggest that multi-species transcriptional profiling, using simultaneous plant and metatranscriptomics coupled to metagenomics may be required to further increase our understanding of the intricate networks underlying plant-microbe interactions in their diverse environments. Four samples were analysed in total. One corresponded to a pooled sample of RNA extracted from root tissues of 60 plants. The other three were biological replicates from shoot tissues, each of which contained 20 plants. Controls were used as reference and corresponded to tissues of plants grown in sterile conditions.
Project description:Although the importance of host plant chemistry in plant-insect interactions is widely accepted, the genetic basis of adaptation to host plants is poorly understood. Here, we investigate transcriptional changes associated with a host plant shift in Drosophila mettleri. While D. mettleri is distributed mainly throughout the Sonoran Desert where it specializes on columnar cacti (Carnegiea gigantea and Pachycereus pringleii), a population on Santa Catalina Island has shifted to coastal prickly pear cactus (Opuntia littoralis). We compared gene expression of larvae from the Sonoran Desert and Santa Catalina Island when reared on saguaro (C. gigantea), coastal prickly pear, and laboratory food. Consistent with expectations based on the complexity and toxicity of cactus relative to laboratory food, within population comparisons between larvae reared on these food sources revealed transcriptional differences in detoxification and other metabolic pathways. The majority of transcriptional differences between populations on the cactus hosts were independent of the rearing environment, and included a disproportionate number of genes involved in processes relevant to host plant adaptation (e.g. detoxification, central metabolism, and chemosensory pathways). Comparisons of transcriptional reaction norms between the two populations revealed extensive shared plasticity that likely allowed colonization of coastal prickly pear on Santa Catalina Island. We also found that while plasticity may have facilitated subsequent adaptive divergence in gene expression between populations, the majority of genes that differed in expression on the novel host were not transcriptionally plastic in the presumed ancestral state.
Project description:MicroRNAs (miRNAs) are small noncoding RNAs that play critical roles in regulating post transcriptional gene expression. Gall midges encompass a large group of insects that are of economic importance and also possess fascinating biological traits. The gall midge Mayetiola destructor, commonly known as the Hessian fly, is a model organism for studying gall midge biology and insect – host plant interactions. In this study, we systematically analyzed miRNAs from the Hessian fly. Deep-sequencing a Hessian fly larval transcriptome led to the identification of 89 miRNA species that are either identical or very similar to known miRNAs from other insects, and 184 novel miRNAs that have not been reported from other species. Microarray analyses revealed the expression of miRNA genes was strictly regulated during Hessian fly larval development and abundance of many miRNA genes were affected by host genotypes. The identification of a large number of miRNAs for the first time from a gall midge provides a foundation for further studies of miRNA functions in gall midge biology and behavior.
Project description:Quantifying the relative impact of environmental conditions and host community structure on disease is one of the greatest challenges of the 21st century, as both climate and biodiversity are changing at unprecedented rates. Both increasing temperature and shifting host communities toward more fast-paced life-history strategies are predicted to increase disease, yet their independent and interactive effects on disease in natural communities remain unknown. Here, we address this challenge by surveying foliar disease symptoms in 220, 0.5 m-diameter herbaceous plant communities along a 1100-m elevational gradient. We find that increasing temperature associated with lower elevation can increase disease by (1) relaxing constraints on parasite growth and reproduction, (2) determining which host species are present in a given location, and (3) strengthening the positive effect of host community pace-of-life on disease. These results provide the first field evidence, under natural conditions, that environmental gradients can alter how host community structure affects disease.
Project description:Identifying the genetic basis for natural selection is a fundamental research goal, and particularly significant for soil fungi because of their central role in ecosystem functioning. Here, we identify rapid evolutionary processes in the plant root colonizing insect pathogen Metarhizium robertsii. While adapting to a new soil community, expression of TATA box containing cell wall and stress response genes evolved at an accelerated rate, whereas virulence determinants, transposons and chromosome structure were unaltered. The survival of diversified field isolates was increased, confirming that the mutations were adaptive, and we further show that large populations of Metarhizium are principally maintained by associations with plant roots rather than insect populations. These results provide a mechanistic basis for understanding mutational and selective effects on soil microbes.